【題目】已知集合M={(x,y)|y=f(x)},若對(duì)于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,則稱集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( )
A.①②
B.②③
C.①④
D.②④
【答案】D
【解析】解:對(duì)于①y= 是以x,y軸為漸近線的雙曲線,漸近線的夾角是90°,所以在同一支上,任意(x1 , y1)∈M,不存在(x2 , y2)∈M,滿足好集合的定義;在另一支上對(duì)任意(x1 , y1)∈M,不存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,所以不滿足“垂直對(duì)點(diǎn)集”的定義,不是“垂直對(duì)點(diǎn)集”.
對(duì)于②M={(x,y)|y=sinx+1},對(duì)于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足“垂直對(duì)點(diǎn)集”的定義,所以M是“垂直對(duì)點(diǎn)集”;正確.
對(duì)于③M={(x,y)|y=log2x},取點(diǎn)(1,0),曲線上不存在另外的點(diǎn),使得兩點(diǎn)與原點(diǎn)的連線互相垂直,所以不是“垂直對(duì)點(diǎn)集”.
對(duì)于④M={(x,y)|y=ex﹣2},如下圖紅線的直角始終存在,對(duì)于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,﹣1),則N(ln2,0),滿足“垂直對(duì)點(diǎn)集”的定義,所以是“垂直對(duì)點(diǎn)集”;正確.
所以②④正確.
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解命題的真假判斷與應(yīng)用(兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱ABC﹣A1B1C1中,底面ABC是正三角形,E是AB中點(diǎn),A1E⊥平面ABC.
(I)證明:BC1∥平面 A1EC;
(II)若A1A⊥A1B,且AB=2.
①求點(diǎn)B到平面ACC1A1的距離;
②求直線CB1與平面ACC1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(diǎn),求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M,N,點(diǎn),有|MP|=|NP|,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線經(jīng)過點(diǎn),求a的值;
(2)若在內(nèi)存在極值,求a的取值范圍;
(3)當(dāng)時(shí),恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個(gè)最高點(diǎn)的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩支球隊(duì)進(jìn)行總決賽,比賽采用五場(chǎng)三勝制,即若有一隊(duì)先勝三場(chǎng),則此隊(duì)為總冠軍,比賽就此結(jié)束.因兩隊(duì)實(shí)力相當(dāng),每場(chǎng)比賽兩隊(duì)獲勝的可能性均為二分之一.據(jù)以往資料統(tǒng)計(jì),第一場(chǎng)比賽可獲得門票收入40萬元,以后每場(chǎng)比賽門票收入比上一場(chǎng)增加10萬元.
(1)求總決賽中獲得門票總收入恰好為150萬元且甲獲得總冠軍的概率;
(2)設(shè)總決賽中獲得的門票總收入為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設(shè)點(diǎn)a=﹣3,b=1,求f(x)的最大值;
(2)當(dāng)a=0,b=﹣ 時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱臺(tái)ABCD-A1B1C1D1中,上底面A1B1C1D1邊長(zhǎng)為1,下底面ABCD邊長(zhǎng)為2,側(cè)棱與底面所成的角為60°,則異面直線AD1與B1C所成角的余弦值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com