17.一拋物線形拱橋,當(dāng)水面寬4米時(shí),水面離拱頂2米,若水面下降1米,則水面的寬為( 。
A.$\sqrt{6}$米B.2$\sqrt{6}$米C.6米D.8米

分析 先建立直角坐標(biāo)系,將A點(diǎn)代入拋物線方程求得m,得到拋物線方程,再把y=-3代入拋物線方程求得x0進(jìn)而得到答案.

解答 解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,
將A(2,-2)代入x2=my,
得m=-2
∴x2=-2y,代入B(x0,-3)得x0=$\sqrt{6}$,
故水面寬為2$\sqrt{6}$米.
故選:B

點(diǎn)評 本題主要考查拋物線的應(yīng)用.考查了學(xué)生利用拋物線解決實(shí)際問題的能力.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過點(diǎn)P($\frac{1}{2}$,1)的直線l與圓C:(x-1)2+y2=4交于A,B兩點(diǎn),當(dāng)∠ACB最小時(shí),三角形ACB的面積為$\frac{\sqrt{55}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.一個(gè)圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分,現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設(shè)∠BOC=θ,直四棱柱木梁的體積為V(單位:m3),側(cè)面積為S(單位:m2).
(Ⅰ)分別求V與S關(guān)于θ的函數(shù)表達(dá)式;
(Ⅱ)求側(cè)面積S的最大值;
(Ⅲ)求θ的值,使體積V最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y+2≤0\\ y≤2\end{array}\right.$,則z=2x-3y的最小值為( 。
A.-6B.-4C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知AB為半圓O的直徑,C為半圓上一點(diǎn),CD是半圓的切線,AC平分∠BAD,AD交半圓于點(diǎn)E.
(Ⅰ)求證:AD⊥CD;
(Ⅱ)若AB=5,DE=1,求AE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知命題p:函數(shù)f(x)=lg(x2+mx+m)的定義域?yàn)镽,命題q:函數(shù)g(x)=x2-2x-1在[m,+∞)上是增函數(shù).
(Ⅰ)若p為真,求m的范圍;
(Ⅱ)若“p∨q”為真命題,“p∧q”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“x2-4x<0”的一個(gè)充分不必要條件為( 。
A.0<x<4B.0<x<2C.x>0D.x<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥-1}\\{x-y≤-1}\\{2x-3y≥-6}\end{array}\right.$
(1)求目標(biāo)函數(shù)z=2x-y的取值范圍;
(2)求目標(biāo)函數(shù)z=x2+y2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a∈{0,1,2},b∈{-1,1,3,5},則函數(shù)f(x)=ax2-2bx在區(qū)間(1,+∞)上為增函數(shù)的概率是( 。
A.$\frac{5}{12}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

同步練習(xí)冊答案