若實數(shù)x,y滿足不等式組數(shù)學公式,則z=x+2y的最大值為________.

6
分析:作出題中不等式組對應(yīng)的平面區(qū)域如圖,將直線l:z=x+2y進行平移,并觀察它在軸上截距的變化,可得當l經(jīng)過區(qū)域的右上頂點A時,z達到最大值.由此求出A點坐標,不難得到本題的答案.
解答:解:作出不等式組對應(yīng)的平面區(qū)域如右圖,是位于△ABO及其內(nèi)部的陰影部分.
將直線l:z=x+2y進行平移,可知越向上平移,z的值越大,當l經(jīng)過區(qū)域的右上頂點A時,z達到最大值
解得A(2,2)
∴zmax=F(2,2)=2+2×2=6
故答案為:6
點評:本題給出線性約束條件,求目標函數(shù)的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單線性規(guī)劃等知識點,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足
f(x1)-f(x2)
x1-x2
<0
,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,
y
x
的取值范圍為
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年重慶一中高三(上)10月月考數(shù)學試卷(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(文科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省淄博市高考數(shù)學模擬試卷3(理科)(解析版) 題型:填空題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

定義在R上的函數(shù)y=f(x),若對任意不等實數(shù)x1,x2滿足,且對于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,則當 1≤x≤4時,的取值范圍為   

查看答案和解析>>

同步練習冊答案