【題目】已知函數(shù),設(shè)
.
(1)判斷函數(shù)零點的個數(shù),并給出證明;
(2)首項為的數(shù)列
滿足:①
;②
.其中
.求證:對于任意的
,均有
.
【答案】(1)有且僅有一個零點;(2)見解析
【解析】試題分析:(1)先求得的定義域為
再證明
在
上單調(diào)遞增,即可得結(jié)果;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出數(shù)列的最大項與最小項,即可證得結(jié)論.
試題解析:(1)由題意知,
當且僅當時等號成立,因此
在
上單調(diào)遞增,又
,
故函數(shù)在
上有且僅有一個零點;
(2)由(1)可知在
上單調(diào)遞增,且
,
故當時,
,即
;
當時,
,即
.
因為當,所以
,
若,則由
,又
在
上單調(diào)遞減知
,
即這與
矛盾,故
,
而當時,
單調(diào)遞增,故
;
同理可證,
故數(shù)列為單調(diào)遞增數(shù)列且所有項均小于
,
因此對于任意的,均有
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,AD⊥平面BCD,CB=CD,AD=DB,P,Q分別在線段AB,AC上,AP=3PB,AQ=2QC,M是BD的中點.
(Ⅰ)證明:DQ∥平面CPM;
(Ⅱ)若二面角C﹣AB﹣D的大小為 ,求∠BDC的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2bx,g(x)=|x﹣1|,若對任意x1 , x2∈[0,2],當x1<x2時都有f(x1)﹣f(x2)<g(x1)﹣g(x2),則實數(shù)b的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)g(x)=log2 (x>0),關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0有三個不同實數(shù)解,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O點為△ABC所在平面內(nèi)一點,且滿足 +2
+3
=
,現(xiàn)將一粒質(zhì)點隨機撒在△ABC內(nèi),若質(zhì)點落在△AOC的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各組函數(shù)中,表示同一個函數(shù)的是( )
A.f(x)=x2和f(x)=(x+1)2
B.f(x)= 和f(x)=
C.f(x)=logax2和f(x)=2logax
D.f(x)=x﹣1和f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,記f1(x)=f(f(x)),f2(x)=f(f1(x)),…,fn+1(x)=f(fn(x)),n∈N* , 那么下列說法正確的是( )
A.f(x)的圖象關(guān)于點(﹣1,1)對稱,f2016(0)=0
B.f(x)的圖象關(guān)于點(﹣1,﹣1)對稱,f2016(0)=0
C.f(x)的圖象關(guān)于點(﹣1,1)對稱,f2016(0)=1
D.f(x)的圖象關(guān)于點(﹣1,﹣1)對稱,f2016(0)=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com