已知P在雙曲線
x2
a2
-
y2
9
=1上,雙曲線的一條漸近線為直線y=
3
2
x,左、右焦點分別是F1,F(xiàn)2.若PF1=5,則PF2的長為( 。
分析:由雙曲線的方程以及漸近線的方程求出a,由雙曲線的定義求出|PF2|.
解答:解:由雙曲線的方程、漸近線的方程可得
3
2
=
3
a
,∴a=2.由雙曲線的定義可得||PF2|-5|=4,
∴|PF2|=9,或|PF2|=1,當(dāng)|PF2|=1時,
|PF2|≥
13
-2
>1,故|PF2|=9
故選D.
點評:本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,由雙曲線的方程、漸近線的方程求出a是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,設(shè)p:函數(shù)y=ax在R上單調(diào)遞減;命題q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲線是雙曲線,如果“p或q”為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知雙曲線
x2
a 2
-
y2
b 2
=1
(b>a>0),0為坐標(biāo)原點,離心率e=2,點M(
5
,
3
)在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P、Q兩點,且
OP
OQ
=0,求:|OP|2+|OQ|2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:曲線
x2
a-2
-
y2
6-a
=1為雙曲線;命題q:函數(shù)f(x)=(4-a)x在R上是增函數(shù);若命題“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a>0,設(shè)p:函數(shù)y=ax在R上單調(diào)遞減;命題q:方程
x2
a-2
+
y2
a-0.5
=1
表示的曲線是雙曲線,如果“p或q”為真,“p且q”為假,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案