【題目】已知函數(shù)f(x)=alnx+ x2﹣ax(a為常數(shù))有兩個(gè)極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)f(x)的兩個(gè)極值點(diǎn)分別為x1 , x2 , 若不等式f(x1)+f(x2)<λ(x1+x2)恒成立,求λ的最小值.
【答案】
(1)解:由題設(shè)知,函數(shù)f(x)的定義域?yàn)椋?,+∞),
f′(x)= 且f′(x)=0有兩個(gè)不同的正根,即x2﹣ax+a=0兩個(gè)不同的正根x1,x2,(x1<x2)
則 ,∴a>4,
(0,x1),f′(x)>0,(x1,x2),f′(x)<0,(x2,+∞),f′(x)>0,
∴x1,x2是f(x)的兩個(gè)極值點(diǎn),符合題意,
∴a>4;
(2)解:f(x1)+f(x2)=alnx1+ x12﹣ax1+alnx2+ x22﹣ax2=a(lna﹣ a﹣1),
∴ =lna﹣ a﹣1,
令y=lna﹣ a﹣1,則y′= ﹣ ,
∵a>4,
∴y′<0,
∴y=lna﹣ a﹣1在(4,+∞)上單調(diào)遞減,
∴y<ln4﹣3,
∵不等式f(x1)+f(x2)<λ(x1+x2)恒成立,x1+x2>0,
∴是λ的最小值ln4﹣3
【解析】(1)f′(x)= 且f′(x)=0有兩個(gè)不同的正根,即x2﹣ax+a=0兩個(gè)不同的正根,即可求實(shí)數(shù)a的取值范圍;(2)利用韋達(dá)定理,可得 =lna﹣ a﹣1,構(gòu)造函數(shù),確定函數(shù)的單調(diào)性,求出其范圍,即可求λ的最小值.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}前n項(xiàng)和Sn滿足:2Sn+an=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2016年1月1日起,我國全面二孩政策正式實(shí)施,這次人口與生育政策的歷史性調(diào)整,使得“要不要再生一個(gè)”“生二孩能休多久產(chǎn)假”等成為千千萬萬個(gè)家庭在生育決策上避不開的話題.為了解針對(duì)產(chǎn)假的不同安排方案形成的生育意愿,某調(diào)查機(jī)構(gòu)隨機(jī)抽取了200戶有生育二胎能力的適齡家庭進(jìn)行問卷調(diào)查,得到如下數(shù)據(jù):
產(chǎn)假安排(單位:周) | 14 | 15 | 16 | 17 | 18 |
有生育意愿家庭數(shù) | 4 | 8 | 16 | 20 | 26 |
(1)若用表中數(shù)據(jù)所得的頻率代替概率,面對(duì)產(chǎn)假為14周與16周,估計(jì)某家庭有生育意愿的概率分別為多少?
(2)假設(shè)從5種不同安排方案中,隨機(jī)抽取2種不同安排分別作為備選方案,然后由單位根據(jù)單位情況自主選擇. ①求兩種安排方案休假周數(shù)和不低于32周的概率;
②如果用ξ表示兩種方案休假周數(shù)和.求隨機(jī)變量ξ的分布及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果數(shù)列,,,(,且),滿足:①,;
②,那么稱數(shù)列為“”數(shù)列.
()已知數(shù)列,,,;數(shù)列,,,,.試判斷數(shù)列,是否為“”數(shù)列.
()是否存在一個(gè)等差數(shù)列是“”數(shù)列?請(qǐng)證明你的結(jié)論.
()如果數(shù)列是“”數(shù)列,求證:數(shù)列中必定存在若干項(xiàng)之和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有、、三座城市,城在城的正西方向,且兩座城市之間的距離為;城在城的正北方向,且兩座城市之間的距離為.由城到城只有一條公路,甲有急事要從城趕到城,現(xiàn)甲先從城沿公路步行到點(diǎn)(不包括、兩點(diǎn))處,然后從點(diǎn)處開始沿山路趕往城.若甲在公路上步行速度為每小時(shí),在山路上步行速度為每小時(shí),設(shè)(單位:弧度),甲從城趕往城所花的時(shí)間為(單位:).
(1)求函數(shù)的表達(dá)式,并求函數(shù)的定義域;
(2)當(dāng)點(diǎn)在公路上何處時(shí),甲從城到達(dá)城所花的時(shí)間最少,并求所花的最少的時(shí)間的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時(shí)a,b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知且,設(shè)命題:函數(shù)在上單調(diào)遞減,命題:對(duì)任意實(shí)數(shù),不等式恒成立.
(1)寫出命題的否定,并求非為真時(shí),實(shí)數(shù)的取值范圍;
(2)如果命題“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)要從高一年級(jí)甲、乙兩個(gè)班級(jí)中選擇一個(gè)班參加市電視臺(tái)組織的“環(huán)保知識(shí)競賽”.該校對(duì)甲、乙兩班的參賽選手(每班7人)進(jìn)行了一次環(huán)境知識(shí)測(cè)試,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85分,乙班學(xué)生成績的中位數(shù)是85.
(1)求的值;
(2)根據(jù)莖葉圖,求甲、乙兩班同學(xué)成績的方差的大小,并從統(tǒng)計(jì)學(xué)角度分析,該校應(yīng)選擇甲班還是乙班參賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)環(huán)保建設(shè),提高社會(huì)效益和經(jīng)濟(jì)效益,某市計(jì)劃用若干年時(shí)間更換一萬輛燃油型公交車。每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動(dòng)力型車。今年初投入了電力型公交車輛,混合動(dòng)力型公交車輛,計(jì)劃以后電力型車每年的投入量比上一年增加,混合動(dòng)力型車每年比上一年多投入輛.設(shè)、分別為第年投入的電力型公交車、混合動(dòng)力型公交車的數(shù)量,設(shè)、分別為年里投入的電力型公交車、混合動(dòng)力型公交車的總數(shù)量。
(1)求、,并求年里投入的所有新公交車的總數(shù);
(2)該市計(jì)劃用年的時(shí)間完成全部更換,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com