分析:(I)先求出其反函數(shù),利用導(dǎo)數(shù)得出切線的斜率即可;
(II)由f(x)=mx
2,令h(x)=
(x>0),利用導(dǎo)數(shù)研究函數(shù)h(x)的單調(diào)性即可得出;
(III)利用作差法
>
=
(b-a+2)+(b-a-2)eb-a |
2(b-a) |
ea,令g(x)=x+2+(x-2)e
x(x>0),利用導(dǎo)數(shù)研究其單調(diào)性即可證明.
解答:
(Ⅰ)解:設(shè)切線方程為y=kx,切點(diǎn)為(x
0,y
0),則
∴x
0=1,k=e,
∴函數(shù)y=f(x)的圖象過原點(diǎn)的切線方程為y=ex;
(Ⅱ)解:當(dāng)x>0,m>0時(shí),令f(x)=mx
2,化為m=
,
令h(x)=
(x>0),則h′(x)=
,
則x∈(0,2)時(shí),h′(x)<0,h(x)單調(diào)遞減;x∈(2,+∞)時(shí),h′(x)>0,h(x)單調(diào)遞增.
∴當(dāng)x=2時(shí),h(x)取得極小值即最小值,h(2)=
.
∴當(dāng)m∈(0,
)時(shí),曲線y=f (x) 與曲線y=mx
2(m>0)公共點(diǎn)的個(gè)數(shù)為0;
當(dāng)m=
時(shí),曲線y=f (x) 與曲線y=mx
2(m>0)公共點(diǎn)的個(gè)數(shù)為1;
當(dāng)m>
時(shí),曲線y=f (x) 與曲線y=mx
2(m>0)公共點(diǎn)個(gè)數(shù)為2.
(Ⅲ)證明:
>
=
(b-a+2)+(b-a-2)eb-a |
2(b-a) |
ea,
令g(x)=x+2+(x-2)e
x(x>0),則g′(x)=1+(x-1)e
x.
g
′′(x)=xe
x>0,∴g′(x)在(0,+∞)上單調(diào)遞增,且g′(0)=0,
∴g′(x)>0,∴g(x)在(0,+∞)上單調(diào)遞增,
而g(0)=0,∴在(0,+∞)上,有g(shù)(x)>g(0)=0.
∵當(dāng)x>0時(shí),g(x)=x+2+(x-2)•e
x>0,且a<b,
∴
(b-a+2)+(b-a-2)eb-a |
2(b-a) |
ea>0,
即當(dāng)a<b時(shí),
>
.