【題目】隨著我國(guó)經(jīng)濟(jì)的快速發(fā)展,民用汽車(chē)的保有量也迅速增長(zhǎng).機(jī)動(dòng)車(chē)保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國(guó),尤其是大中型城市,機(jī)動(dòng)車(chē)已成為城市空氣污染的重要來(lái)源.因此,合理預(yù)測(cè)機(jī)動(dòng)車(chē)保有量是未來(lái)進(jìn)行機(jī)動(dòng)車(chē)污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),該市機(jī)動(dòng)車(chē)保有量數(shù)據(jù)如表所示.

年份

2012

2013

2014

2015

2016

年份代碼

1

2

3

4

5

機(jī)動(dòng)車(chē)保有量(萬(wàn)輛)

169

181

196

215

230

(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;

(2)建立機(jī)動(dòng)車(chē)保有量關(guān)于年份代碼的回歸方程;

(3)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017年該市機(jī)動(dòng)車(chē)保有量.

附注:回歸直線(xiàn)方程中的斜率和截距的最小二乘估計(jì)公式分別為:

, .

【答案】(1)答案見(jiàn)解析;(2) .(3)245萬(wàn)輛.

【解析】試題分析:

(1)結(jié)合所給的數(shù)據(jù)繪制散點(diǎn)圖即可;

(2)結(jié)合所給的數(shù)據(jù)計(jì)算可得回歸方程為.

(3)結(jié)合線(xiàn)性回歸方程的預(yù)測(cè)作用可得2017年該市機(jī)動(dòng)車(chē)保有量是245萬(wàn)輛.

試題解析:

1)數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖如圖所示.

2, , ,

所以回歸直線(xiàn)方程為.

3)代入2017年的年份代碼,得,所以按照當(dāng)前的變化趨勢(shì),2017年該市機(jī)動(dòng)車(chē)保有量為245萬(wàn)輛.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn),過(guò)右焦點(diǎn)軸不垂直的直線(xiàn)交橢圓于, 兩點(diǎn).

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線(xiàn)的斜率為時(shí),求的面積.

Ⅲ)在線(xiàn)段上是否存在點(diǎn),使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解學(xué)生的身體狀況,某校隨機(jī)抽取了一批學(xué)生測(cè)量體重,經(jīng)統(tǒng)計(jì),這批學(xué)生的體重?cái)?shù)據(jù)(單位:千克)全部介于之間,將數(shù)據(jù)分成以下組,第一組,第二組,第三組,第四組,第五組,得到如圖所示的頻率分布直方圖,現(xiàn)采用分層抽樣的方法,從第、組中隨機(jī)抽取名學(xué)生做初檢.

)求每組抽取的學(xué)生人數(shù).

)若從名學(xué)生中再次隨機(jī)抽取名學(xué)生進(jìn)行復(fù)檢,求這名學(xué)生不在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面為梯形,,,且

若點(diǎn)上一點(diǎn)且,證明:平面;

二面角的大;

在線(xiàn)段上是否存在一點(diǎn),使得?若存在,求出的長(zhǎng);若不存在,說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面四邊形中, 為正三角形,則面積的最大值為( )

A. 2 B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在 軸上的橢圓過(guò)點(diǎn),離心率為, , 是橢圓的長(zhǎng)軸的兩個(gè)端點(diǎn)(位于右側(cè)),是橢圓在軸正半軸上的頂點(diǎn).

1求橢圓的標(biāo)準(zhǔn)方程;

2)是否存在經(jīng)過(guò)點(diǎn)且斜率為的直線(xiàn)與橢圓交于不同兩點(diǎn),使得向量共線(xiàn)?如果存在,求出直線(xiàn)方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為,( 為參數(shù)),以為極點(diǎn), 軸的正半軸建立極坐標(biāo)系,曲線(xiàn)是圓心在極軸上且經(jīng)過(guò)極點(diǎn)的圓,射線(xiàn)與曲線(xiàn)交于點(diǎn)

)求曲線(xiàn)的普通方程及的直角坐標(biāo)方程;

)在極坐標(biāo)系中, 是曲線(xiàn)的兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著高等級(jí)公路的迅速發(fā)展,公路綠化受到高度重視,需要大量各種苗木.某苗圃培植場(chǎng)對(duì)100棵“天竺桂”的移栽成活量(單位:棵)與在前三個(gè)月內(nèi)澆水次數(shù)間的關(guān)系進(jìn)行研究,根據(jù)以往的記錄,整理相關(guān)的數(shù)據(jù)信息如圖所示:

(1)結(jié)合圖中前4個(gè)矩形提供的數(shù)據(jù),利用最小二乘法求關(guān)于的回歸直線(xiàn)方程;

(2)用表示(1)中所求的回歸直線(xiàn)方程得到的100棵“天竺桂”的移栽成活量的估計(jì)值,當(dāng)圖中余下的矩形對(duì)應(yīng)的數(shù)據(jù)組的殘差的絕對(duì)值,則回歸直線(xiàn)方程有參考價(jià)值,試問(wèn):(1)中所得到的回歸直線(xiàn)方程有參考價(jià)值嗎?

(3)預(yù)測(cè)100棵“天竺桂”移栽后全部成活時(shí),在前三個(gè)月內(nèi)澆水的最佳次數(shù).

附:回歸直線(xiàn)方程為,其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解本市居民的生活成本,甲、乙、丙三名同學(xué)利用假期分別對(duì)三個(gè)社區(qū)進(jìn)行了“家庭每月日常消費(fèi)額”的調(diào)查.他們將調(diào)查所得到的數(shù)據(jù)分別繪制成頻率分布直方圖(如圖所示),記甲、乙、丙所調(diào)查數(shù)據(jù)的標(biāo)準(zhǔn)差分別為s1、s2s3,則它們的大小關(guān)系為__________.(用“>”連接)

查看答案和解析>>

同步練習(xí)冊(cè)答案