【題目】已知函數(shù),其中常數(shù).

1)令,將函數(shù)的圖像向左平移個(gè)單位,再向上平移1個(gè)單位,得到函數(shù),求函數(shù)的解析式;

2)若上單調(diào)遞增,求的取值范圍;

3)在(1)的條件下的函數(shù)的圖像,區(qū)間滿足:上至少含有30個(gè)零點(diǎn),在所有滿足上述條件的中,求的最小值.

【答案】1;(2;(3

【解析】

1)根據(jù)正弦函數(shù)平移“左加右減、上加下減”的法則即可求得

2)利用范圍可求得的范圍,根據(jù)單調(diào)性可得不等式組,解不等式組求得;由可求得,兩個(gè)范圍取交集得到最終結(jié)果;

3)令可求得零點(diǎn),進(jìn)而得到相鄰零點(diǎn)之間的距離;若最小,知均為零點(diǎn),此時(shí)在恰有個(gè)零點(diǎn),從而得到在至少有一個(gè)零點(diǎn);根據(jù)相鄰零點(diǎn)之間距離即可得到滿足的條件,進(jìn)而求得所求的最小值.

1

,即

2 當(dāng)時(shí),

,,解得:,

的取值范圍為

3)令得:

解得:,

相鄰兩個(gè)零點(diǎn)之間的距離為

最小,則均為的零點(diǎn),此時(shí)在區(qū)間,…,分別恰有個(gè)零點(diǎn)

在區(qū)間恰有個(gè)零點(diǎn) 至少有一個(gè)零點(diǎn)

,即

檢驗(yàn)可知,在恰有個(gè)零點(diǎn),滿足題意

的最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的解析式;

(2)試判斷的單調(diào)性,并用定義法證明;

3)若存在,使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),), ).

(1)如果是關(guān)于的不等式的解,求實(shí)數(shù)的取值范圍;

(2)判斷的單調(diào)性,并說明理由;

(3)證明:函數(shù)存在零點(diǎn)q,使得成立的充要條件是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】省環(huán)保廳對、三個(gè)城市同時(shí)進(jìn)行了多天的空氣質(zhì)量監(jiān)測,測得三個(gè)城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個(gè),三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個(gè)數(shù)如下表所示:

優(yōu)(個(gè))

28

良(個(gè))

32

30

已知在這180個(gè)數(shù)據(jù)中隨機(jī)抽取一個(gè),恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.

(1)現(xiàn)按城市用分層抽樣的方法,從上述180個(gè)數(shù)據(jù)中抽取30個(gè)進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個(gè)數(shù);

(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論中正確的個(gè)數(shù)是(

①正三棱錐的頂點(diǎn)在底面的射影到底面各頂點(diǎn)的距離相等;

②有兩個(gè)側(cè)面是矩形的棱柱是直棱柱;

③兩個(gè)底畫平行且相似的多面體是棱臺;

④底面是正三角形,其余各面都是等腰三角形的三棱錐一定是正三棱錐.

A.0B.1C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個(gè)正三棱臺,而且下底面邊長為2,上底面邊長和側(cè)棱長都為1.O分別是下底面與上底面的中心.

1)求棱臺的斜高;

2)求棱臺的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解該校多媒體教學(xué)普及情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該校50名教師,他們的年齡頻數(shù)及使用多媒體教學(xué)情況的人數(shù)分布如下表:

(1)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為以40歲為分界點(diǎn)對是否經(jīng)常使用多媒體教學(xué)有差異?

附:.

(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用多媒體的教師中選出6人,再從這6人中隨機(jī)抽取2人,求這2人中至少有1人年齡在30-39歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是由矩形和菱形組成的一個(gè)平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點(diǎn)共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點(diǎn),.

(1)求證:∥平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案