已知橢圓C的短軸長(zhǎng)等于焦距,橢圓C上的點(diǎn)到右焦點(diǎn)的最短距離為.
(1)求橢圓C的方程;
(2)過點(diǎn)且斜率為(>0)的直線C交于兩點(diǎn),是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),證明:三點(diǎn)共線.

(1)(2)設(shè)出直線的方程,聯(lián)立方程組即可利用利用兩個(gè)向量共線證明三點(diǎn)共線

解析試題分析:(1)由題意:,得
所求橢圓的方程為:                                                        …4分
(2)設(shè)直線,,,,
 消得:
所以                                                               …8分 
,

,
. 又 有公共點(diǎn)   ∴三點(diǎn)共線.                         …14分
考點(diǎn):本小題主要考查橢圓方程的求解和向量共線的應(yīng)用.
點(diǎn)評(píng):證明三點(diǎn)共線,一般轉(zhuǎn)化為兩個(gè)兩個(gè)向量共線,而這又離不開直線方程和橢圓方程聯(lián)立方程組,運(yùn)算量比較大,要注意“舍而不求”思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,直線,為平面上的動(dòng)點(diǎn),過點(diǎn)的垂線,垂足為點(diǎn),且
(1)求動(dòng)點(diǎn)的軌跡曲線的方程;
(2)設(shè)動(dòng)直線與曲線相切于點(diǎn),且與直線相交于點(diǎn),試探究:在坐標(biāo)平面內(nèi)是否存在一個(gè)定點(diǎn),使得以為直徑的圓恒過此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的左焦點(diǎn)為F,過點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的中垂線與x軸和y軸分別交于D、E兩點(diǎn).

(Ⅰ)若點(diǎn)G的橫坐標(biāo)為,求直線AB的斜率;
(Ⅱ)記△GFD的面積為S1,△OED(O為原點(diǎn))的面積為S2
試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率等于,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為,,過點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時(shí),曲線與曲線有兩個(gè)交點(diǎn).求的值;
(2)若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓的頂點(diǎn)為,焦點(diǎn)為,.

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)n 為過原點(diǎn)的直線,是與n垂直相交于P點(diǎn),與橢圓相交于A, B兩點(diǎn)的直線,.是否存在上述直線使成立?若存在,求出直線的方程;并說出;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓的離心率為,且經(jīng)過點(diǎn)。若分別過橢圓的左右焦點(diǎn)的動(dòng)直線、相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率、、滿足

(1)求橢圓的方程;
(2)是否存在定點(diǎn)M、N,使得為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若雙曲線的離心率等于,直線與雙曲線的右支交于兩點(diǎn).
(1)求的取值范圍;
(2)若,點(diǎn)是雙曲線上一點(diǎn),且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

雙曲線=1(a>0,b>0)的離心率為2,坐標(biāo)原點(diǎn)到直線AB的距離為,其中A(0,-b),B(a,0).
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)F是雙曲線的右焦點(diǎn),直線l過點(diǎn)F且與雙曲線的右支交于不同的兩點(diǎn)P、Q,點(diǎn)M為線段PQ的中點(diǎn).若點(diǎn)M在直線x=-2上的射影為N,滿足·=0,且||=10,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案