1.F是拋物線y2=4x的焦點(diǎn),P為拋物線上一點(diǎn).若|PF|=3,則點(diǎn)P的縱坐標(biāo)為(  )
A.±3B.$±\;2\sqrt{2}$C.±2D.±1

分析 求出拋物線的焦點(diǎn)和準(zhǔn)線方程,設(shè)出P的坐標(biāo),運(yùn)用拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),即可得到所求值.

解答 解:拋物線y2=4x的焦點(diǎn)F(1,0),
準(zhǔn)線l為x=-1,
設(shè)拋物線的點(diǎn)P(m,n),
則由拋物線的定義,可得|PF|=d(d為P到準(zhǔn)線的距離),
即有m+1=3,
解得,m=2,
∴n2=8,
解得n=±2$\sqrt{2}$
故選:B

點(diǎn)評(píng) 本題考查拋物線的定義、方程和性質(zhì),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=$\frac{sinx}{x+1}$,則f′(0)等于( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若兩條直線2x-y=0與ax-2y-1=0互相垂直,則實(shí)數(shù)a的值為( 。
A.-4B.-1C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.用一個(gè)平面截正方體和正四面體,給出下列結(jié)論:
①正方體的截面不可能是直角三角形;
②正四面體的截面不可能是直角三角形;
③正方體的截面可能是直角梯形;
④若正四面體的截面是梯形,則一定是等腰梯形.
其中,所有正確結(jié)論的序號(hào)是( 。
A.②③B.①②④C.①③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知F1為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦點(diǎn),過F1的直線l與橢圓交于兩點(diǎn)P,Q.
(Ⅰ)若直線l的傾斜角為45°,求|PQ|;
(Ⅱ)設(shè)直線l的斜率為k(k≠0),點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)為P′,點(diǎn)Q關(guān)于x軸的對稱點(diǎn)為Q′,P′Q′所在直線的斜率為k′.若|k′|=2,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.過橢圓$\frac{x^2}{2}+{y^2}=1$右焦點(diǎn)F的直線l與橢圓交于兩點(diǎn)C,D,與直線x=2交于點(diǎn)E.
(Ⅰ)若直線l的斜率為2,求|CD|;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),若S△ODE:S△OCE=1:3,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,A,B是圓x2+y2=4上的兩個(gè)動(dòng)點(diǎn),且AB=2,則線段AB中點(diǎn)M的軌跡方程為x2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)$P(1,\frac{3}{2})$和動(dòng)點(diǎn)Q(m,n)都在離心率為$\frac{1}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)上,其中m<0,n>0.
(1)求橢圓的方程;
(2)若直線l的方程為3mx+4ny=0,點(diǎn)R(點(diǎn)R在第一象限)為直線l與橢圓的一個(gè)交點(diǎn),點(diǎn)T在線段OR上,且QT=2.
①若m=-1,求點(diǎn)T的坐標(biāo);
②求證:直線QT過定點(diǎn)S,并求出定點(diǎn)S的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.定義在實(shí)數(shù)集R上的函數(shù)f(x)都可以寫為一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和的形式,如果f(x)=2x+1,那么( 。
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

同步練習(xí)冊答案