已知雙曲線
x2
a2
-
y2
b2
=1(a>1,b>0)
的焦距為2c,離心率為e,若點(diǎn)(-1,0)與點(diǎn)(1,0)到直線
x
a
-
y
b
=1
的距離之和為S,且S
4
5
c
,則離心率e的取值范圍是(  )
A.[
5
2
,
5
]
B.[
2
7
]
C.[
5
2
,
7
]
D.[
2
,
5
]
直線l的方程為
x
a
-
y
b
=1
,即bx-ay-ab=0.
由點(diǎn)到直線的距離公式,且a>1,得到點(diǎn)(1,0)到直線l的距離 d1=
|b(a-1)|
a2+b2
,
同理得到點(diǎn)(-1,0)到直線l的距離.d2=
|b(a+1)|
a2+b2
,s=d1+d2=
2ba
a2+b2
=
2ab
c

由S
4
5
c
,即
2ab
c
4
5
c
5
c2-a2
•a≥2c2
于是得4e4-25e2+25≤0.
解不等式,得
5
4
≤e 2≤5

由于e>1>0,
所以e的取值范圍是 e∈[
5
2
,
5
]

故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點(diǎn)F1,交雙曲線的左支于A、B兩點(diǎn),且|AB|=4,F(xiàn)2為雙曲線的右焦點(diǎn),△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標(biāo)原點(diǎn),離心率e=2,點(diǎn)M(
5
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點(diǎn),且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點(diǎn)
(-2,1)
(-2,1)

(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習(xí)冊答案