曲線y=2x3在x=1處的切線的斜率是

[  ]

A.2

B.4

C.6

D.8

答案:C
解析:

,故選C.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源:設計選修數(shù)學-2-2蘇教版 蘇教版 題型:044

求曲線y=2x3-3x2+6x-1在x=1及x=-1處兩切線的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省深圳高級中學2011屆高三高考前最后模擬數(shù)學文科試卷 題型:044

已知函數(shù)f(x)=xlnx+(a-1)x(a∈R).

(Ⅰ)當a=1時,求曲線y=f(x)在x=1處的切線方程;

(Ⅱ)求函數(shù)f(x)在區(qū)間[,e]上的最小值;

(Ⅲ)若關于的方程f(x)=2x3-3x2在區(qū)間[,2]內(nèi)有兩個不相等的實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省高三第一次月考理科數(shù)學試卷(解析版) 題型:選擇題

.點P在曲線y=2x3-x+5上移動,設點P處切線傾斜角為α,則角α的取值范圍是(  )

A.[0,]           B.[0,)∪[,π)    

C.[,π)          D.(,]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年河北省高三8月月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.

【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習冊答案