己知函數(shù)f(x)=
3
sinxcosx+co
s
x-
1
2
,△ABC
三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(B)=1.
(I)求角B的大小;
(II)若a=
3
,b=1
,求c的值.
(I)∵sinxcosx=
1
2
sin2x,cos2x=
1
2
(1+cos2x)
f(x)=
3
sinxcosx+co
s
x-
1
2
=
3
2
sin2x+
1
2
cos2x=sin(2x+
π
6

∵f(B)=1,即sin(2B+
π
6
)=1
∴2B+
π
6
=
π
2
+2kπ(k∈Z),可得B=
π
6
+kπ(k∈Z)
∵B∈(0,π),∴取k=0,得B=
π
6
;
(II)根據(jù)余弦定理b2=a2+c2-2accosB,得
12=(
3
2+c2-2
3
ccos
π
6

化簡(jiǎn)整理得c2-3c+2=0,解之得c=1或2.
即當(dāng)a=
3
,b=1
時(shí),邊c的值等于c=1或2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象點(diǎn)的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2的定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,n≥2)
,an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*)
,Tn為數(shù)列{an}前n項(xiàng)和,當(dāng)Tn<m(Sn+1+1)對(duì)一切n∈N*都成立時(shí),試求實(shí)數(shù)m的取值范圍.
(3)在(2)的條件下,設(shè)bn=
1
4(Sn+1+1)(Sn+2+1)+1
,Bn為數(shù)列{bn}前n項(xiàng)和,證明:Bn
17
52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=
x2
1+x2
,那么f(1)+f(2)+f(3)+…+f(2009)+f(
1
2
)+f(
1
3
)+…+f(
1
2009
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)己知函數(shù)f(x)=
3
sinxcosx+co
s
2
 
x-
1
2
,△ABC
三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且f(B)=1.
(I)求角B的大。
(II)若a=
3
,b=1
,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知函數(shù)f(x)=
1
2
(1+x)2-ln(1+x)

(1)求f(x)的單調(diào)區(qū)間;
(2)若x∈[
1
e
-1,e-1]
時(shí),f(x)<m恒成立,求m的取值范圍;
(3)若設(shè)函數(shù)g(x)=
1
2
x2+
1
2
x+a
,若g(x)的圖象與f(x)的圖象在區(qū)間[0,2]上有兩個(gè)交點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•遂寧二模)己知函數(shù)f(x)=
2x-a(x≥3)
x2-9
x-3
(x<3)
,在x=3處連續(xù),則常數(shù)a的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案