【題目】如圖,在正方體中,分別是中點(diǎn).

求證:(1)平面;

(2)平面.

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】

試題分析:

(1)利用正方體的性質(zhì)和三角形中位線性質(zhì)可得EFAD1,進(jìn)而利用平行四邊形ABC1D1轉(zhuǎn)化為EFBC1最后利用線面平行的判定定理證得結(jié)論

(2)首先利用側(cè)棱垂直于底面得到AA1BD,然后結(jié)合正方形性質(zhì)有ACBD即可證得BD平面AA1C同理可證A1CBC1最后利用面垂直的判定定理即得結(jié)論

試題解析:

證明:(1)連結(jié)A1D,

E,F分別是ADDD1的中點(diǎn) EFAD1 2

正方體ABCDA1B1C1D1,

ABD1C1AB=D1C1

四邊形ABC1D1為平行四邊形,即有A1DBC1 4

EFBC1

EF平面C1BD,BC1平面C1BD

EF平面AB1D1 7

2)連結(jié)AC,ACBD

正方體ABCDA1B1C1D1AA1平面ABCD,

AA1BD

,BD平面AA1C

A1CBD 11

同理可證A1CBC1

,A1C平面C1BD 14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點(diǎn),求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動(dòng)點(diǎn),當(dāng)|AB|取最大值時(shí),求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為圓O的直徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)求直線AB與平面CBF所成角的大;
(Ⅲ)當(dāng)AD的長(zhǎng)為何值時(shí),平面DFC與平面FCB所成的銳二面角的大小為60°?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分16分)已知數(shù)列, )滿足, 其中

1)當(dāng)時(shí),求關(guān)于的表達(dá)式,并求的取值范圍;

2)設(shè)集合

,求證:

是否存在實(shí)數(shù), ,使, , 都屬于?若存在,請(qǐng)求出實(shí)數(shù), ;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a1=﹣2,公差d=3;數(shù)列{bn}中,Sn為其前n項(xiàng)和,滿足:2nSn+1=2n(n∈N+
(Ⅰ)記An= ,求數(shù)列An的前n項(xiàng)和S;
(Ⅱ)求證:數(shù)列{bn}是等比數(shù)列;
(Ⅲ)設(shè)數(shù)列{cn}滿足cn=anbn , Tn為數(shù)列{cn}的前n項(xiàng)積,若數(shù)列{xn}滿足x1=c2﹣c1 , 且xn= ,求數(shù)列{xn}的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當(dāng)b=3﹣a時(shí),對(duì)任意的x∈(﹣1,0]都有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.

(1)若該校高一年級(jí)共有學(xué)生1000人,試估計(jì)成績(jī)不低于60分的人數(shù);
(2)為了幫助學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定在隨機(jī)抽取的50名學(xué)生中成立“二幫一”小組,即從成績(jī)[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué).已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91


(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝20件,估計(jì)可獲純利多少元?
已知: x =280, y =45309, xiyi=3487, = , =

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】秦九韶算法是中國(guó)南宋時(shí)期的數(shù)學(xué)家秦九韶提出的一種多項(xiàng)式簡(jiǎn)化算法,對(duì)于求一個(gè)n次多項(xiàng)式函數(shù)fn(x)=anxn+an1xn1+…+a1x+a0的具體函數(shù)值,運(yùn)用常規(guī)方法計(jì)算出結(jié)果最多需要n次加法和 乘法,而運(yùn)用秦九韶算法由內(nèi)而外逐層計(jì)算一次多項(xiàng)式的值的算法至多需要n次加法和n次乘法.對(duì)于計(jì)算機(jī)來(lái)說(shuō),做一次乘法運(yùn)算所用的時(shí)間比做一次加法運(yùn)算要長(zhǎng)得多,所以此算法極大地縮短了CPU運(yùn)算時(shí)間,因此即使在今天該算法仍具有重要意義.運(yùn)用秦九韶算法計(jì)算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當(dāng)x=3時(shí)的值時(shí),最先計(jì)算的是(
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6

查看答案和解析>>

同步練習(xí)冊(cè)答案