下列命題中,不是真命題的為( 。
分析:A.我們知道原命題與其逆否命題是等價(jià)命題,因此可判斷出原命題的真假即可;
B.先寫出其逆命題,再進(jìn)行判斷即可;
C.先寫出其否命題,再進(jìn)行判斷即可;
D.先寫出其逆命題,再利用對頂角的定義判斷即可.
解答:解:A.∵命題“若b2-4ax>0,則二次方程ax2+bx+c=0有實(shí)數(shù)根”正確,故其逆否命題也正確,因此A是真命題;
B.∵“四邊相等的四邊形是正方形”的逆命題是“正方形的四條邊相等”正確;
C.“x2=9則x=3”的否命題是“x2≠9,則x≠3”,正確;
D.“對頂角相等”的逆命題是“相等的角是對頂角”,因?yàn)閮蓚(gè)直角必定相等,但是不一定是對頂角,故不是真命題.
故選D.
點(diǎn)評(píng):正確理解四種命題之間的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是
③④
(寫出所有真命的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省株洲二中高二(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是    (寫出所有真命的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省云浮市羅定市高二(上)期中質(zhì)量檢測數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是    (寫出所有真命的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007-2008學(xué)年重慶市暨華中學(xué)高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是    (寫出所有真命的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省孝感高中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:填空題

已知m、n是不同的直線,α,β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n.
②若m,n?α,m∥β,n∥β,則α∥β.
③若m⊥α,n⊥β,m∥n,則α∥β.
④m、n是兩條異面直線,若m∥α,m∥β,n∥α,n∥β,則α∥β.
上面命題中,真命題的序號(hào)是    (寫出所有真命的序號(hào)).

查看答案和解析>>

同步練習(xí)冊答案