分析 直接利用二倍角的余弦函數(shù)化簡求解即可.
解答 解:3π<x<4π,∴$\frac{x}{2}$∈$(\frac{3π}{2},2π)$
則$\sqrt{\frac{1+cosx}{2}}$+$\sqrt{\frac{1-cosx}{2}}$=$\sqrt{\frac{1+2{cos}^{2}\frac{x}{2}-1}{2}}$+$\sqrt{\frac{1-1+2{sin}^{2}\frac{x}{2}}{2}}$=cos$\frac{x}{2}$-sin$\frac{x}{2}$=$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).
故答案為:$\sqrt{2}$cos($\frac{x}{2}$+$\frac{π}{4}$).
點(diǎn)評 本題可得兩角和與差的三角函數(shù),二倍角公式的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{5}i$ | B. | $-2\sqrt{5}i$ | C. | $2\sqrt{5}$ | D. | $-2\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1) | B. | (-∞,1) | C. | (-1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=lnx | B. | x=log327 | C. | y=log-2x | D. | y=5x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com