已知函數(shù)數(shù)學公式(a∈R).
(1)當a=-3時,求函數(shù)f(x)的極值;
(2)設g(x)=f(x)+f′(x)+ax2,若函數(shù)g(x)在區(qū)間(-1,1)有極值,求a的取值范圍;
(3)若函數(shù)f(x)的圖象與x軸有且只有一個交點,求a的取值范圍.

解:(1)當a=-3時,,
∴f'(x)=x2-2x-3=(x-3)(x+1).令f'(x)=0,得 x1=-1,x2=3.
當x<-1時,f′(x)>0,則f(x)在(-∞,-1)上單調(diào)遞增;
當-1<x<3時,f′(x)<0,則f(x)在(-1,3)上單調(diào)遞減;
當x>3時,f′(x)>0,f(x)在(3,+∞)上單調(diào)遞增;
∴當x=-1時,f(x)取得極大值為:f(-1)=
當x=3時,f(x)取得極小值為:=-6.
(2)∵
問題轉(zhuǎn)化為方程g′(x)=0在區(qū)間(-1,1)內(nèi)有解,
∴g′(-1)•g′(1)<0或
解得a<-1或a>
故a的取值范圍為:(-∞,-1)∪(,+∞).
(3)∵f'(x)=x2-2x+a,∴△=4-4a=4(1-a).
①若a≥1,則△≤0,∴f'(x)≥0在R上恒成立,
∴f(x)在R上單調(diào)遞增.∵f(0)=-a<0,f(3)=2a>0,
∴當a≥1時,函數(shù)f(x)的圖象與x軸有且只有一個交點.
②若a<1,則△>0,
∴f'(x)=0有兩個不相等的實數(shù)根,不妨設為x1,x2,(x1<x2).
∴x1+x2=2,x1x2=a.
當x變化時,f′(x),f(x)的取值情況如下表:
x(-∞,x1x1(x1,x2x2(x2,+∞)
f'(x)+0-0+
f(x)極大值極小值
,
.∴===,
同理f(x2)=
=
==
令f(x1)•f(x2)>0,解得a>0.
而當0<a<1時,f(0)=-a<0,f(3)=2a>0,
故當0<a<1時,函數(shù)f(x)的圖象與x軸有且只有一個交點.
綜上所述,a的取值范圍是(0,+∞).
分析:(1)當a=-3時,求出導函數(shù)f′(x)的零點,然后判斷導數(shù)在零點兩側的符號,由此可得極值情況;
(2)g(x)在區(qū)間(-1,1)有極值,即g′(x)=0在(-1,1)內(nèi)有解,且在解的兩側導數(shù)異號;
(3)函數(shù)f(x)的圖象與x軸有且只有一個交點,即函數(shù)f(x)只有一個零點,用導數(shù)研究函數(shù)f(x)的單調(diào)性、極值,由零點存在的條件可得關于a的約束條件,由此可求其范圍.
點評:本題考查函數(shù)在某點取得極值的條件,可導函數(shù)f(x)在點x0處取得極值的充要條件是f′(x0)=0,且f′(x)在x0左右兩側異號.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年北京市十一學校高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省百所重點高中高三(上)段考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省常州高級中學高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù)(a∈R且a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 記函數(shù)y=F(x)的圖象為曲線C.設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x,y),使得:①;②曲線C在M處的切線平行于直線AB,則稱函數(shù)F(x)存在“中值相依切線”.
試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水一中高一(下)第二次段考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),a∈R.
(1)當a=1時,求函數(shù)f(x)的最大值;
(2)如果對于區(qū)間上的任意一個x,都有f(x)≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省梅州市高二第二學期3月月考理科數(shù)學試卷 題型:解答題

 

已知函數(shù)  (a∈R).

 (1)若在[1,e]上是增函數(shù),求a的取值范圍; 

(2)若a=1,1≤x≤e,證明:<.

 

查看答案和解析>>

同步練習冊答案