已知數(shù)列{an}的首項a11,其前n項和Snan之間滿足an (n2)

(1)求證數(shù)列{}為等差數(shù)列.

(2)求數(shù)列{an}的通項公式.

答案:
解析:

          (1)證明: ∵anSnSn1,由已知條件知

          SnSn1,
          提示:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項a1=
          1
          2
          ,前n項和Sn=n2an(n≥1).
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)b1=0,bn=
          Sn-1
          Sn
          (n≥2)
          ,Tn為數(shù)列{bn}的前n項和,求證:Tn
          n2
          n+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項為a1=2,前n項和為Sn,且對任意的n∈N*,當(dāng)n≥2,時,an總是3Sn-4與2-
          52
          Sn-1
          的等差中項.
          (1)求數(shù)列{an}的通項公式;
          (2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項和,n∈N*,求Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•江門一模)已知數(shù)列{an}的首項a1=1,若?n∈N*,an•an+1=-2,則an=
          1,n是正奇數(shù)
          -2,n是正偶數(shù)
          1,n是正奇數(shù)
          -2,n是正偶數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項為a1=3,通項an與前n項和sn之間滿足2an=Sn•Sn-1(n≥2).
          (1)求證:數(shù)列{
          1Sn
          }
          是等差數(shù)列;
          (2)求數(shù)列{an}的通項公式;
          (3)求數(shù)列{an}中的最大項.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}的首項a1=
          2
          3
          ,an+1=
          2an
          an+1
          ,n∈N+
          (Ⅰ)設(shè)bn=
          1
          an
          -1
          證明:數(shù)列{bn}是等比數(shù)列;
          (Ⅱ)數(shù)列{
          n
          bn
          }的前n項和Sn

          查看答案和解析>>

          同步練習(xí)冊答案