經(jīng)過點(diǎn)A(-3,1)和點(diǎn)B(4,-2)的直線l的點(diǎn)方向式方程是
x+3
7
=
y-1
-3
x+3
7
=
y-1
-3
分析:先求出直線的方向向量的坐標(biāo),再根據(jù)直線上的一個(gè)點(diǎn)的坐標(biāo),即可得到直線的點(diǎn)方向式方程.
解答:解:直線的方向向量為
a
=(4,-2)-(-3,1)=(7,-3),
故直線l的點(diǎn)方向式方程是
x+3
7
=
y-1
-3
,
故答案為:
x+3
7
=
y-1
-3
點(diǎn)評:本題考查求直線的點(diǎn)方向式方程,求出直線的方向向量的坐標(biāo),是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)A(-3,1),并且對稱軸都在坐標(biāo)軸上的等軸雙曲線的方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求經(jīng)過點(diǎn)A(3,-1),并且對稱軸都在坐標(biāo)軸上的等軸雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l經(jīng)過點(diǎn)A(3,1),并且點(diǎn)P(-1,-2)到直線l的距離為4,求此直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知中心在原點(diǎn)且焦點(diǎn)在x軸上的橢圓E經(jīng)過點(diǎn)A(3,1),離心率e=
6
3

(1)求橢圓E的方程;
(2)過點(diǎn)A且斜率為1的直線交橢圓E于A、C兩點(diǎn),過原點(diǎn)O與AC垂直的直線交橢圓E于B、D兩點(diǎn),求證A、B、C、D四點(diǎn)在同一個(gè)圓上.

查看答案和解析>>

同步練習(xí)冊答案