【題目】如圖所示,以原點為圓心的兩個同心圓,其中,大圓的半徑為 ,小圓的半徑為,點為大圓上一動點,連接,與小圓交于點,過點軸的垂線,垂足為,過點作直線的垂線,垂足為,點,記.

(1)求點的坐標(用含有的式子表示),并寫出點的軌跡方程,指出點的軌跡是什么曲線;

(2)設(shè)點的軌跡為,點分別是曲線上的兩個動點,且,求的值.

【答案】(1)點的軌跡方程為,點的軌跡是一個中心為原點,焦點在軸上的橢圓.(2)

【解析】試題分析:(1)根據(jù)題意可根據(jù)極坐標定義得化為普通方程即得答案2)可設(shè) 其中,由E,F在橢圓上,代入可得,再將化簡表達式即可求解

試題解析:

解:

(1),則點的軌跡方程為

的軌跡是一個中心為原點,焦點在軸上的橢圓.

(2)設(shè),其中

因為點在橢圓上,所以,所以 ,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù), .

(1)若,寫出函數(shù)的單調(diào)增區(qū)間和減區(qū)間;

2)若,求函數(shù)的最大值和最小值;

(3)若函數(shù)在上是單調(diào)函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,三條邊所對的角分別為A、B,C,向量=(),=(),且滿足=

(1)求角C的大。

(2)若sinA,sinC,sinB成等比數(shù)列,且 =﹣8,求邊的值并求△ABC外接圓的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C的中心在原點,其一個焦點與拋物線y2=4x的焦點相同,又橢圓C上有一點M(2,1),直線l平行于OM且與橢圓C交于A,B兩點,連接MA,MB.

(1)求橢圓C的方程;

(2)當MA,MB與x軸所構(gòu)成的三角形是以x軸上所在線段為底邊的等腰三角形時,求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)fx)的圖象如圖所示,曲線BCD為拋物線的一部分.

(Ⅰ)求fx)解析式;

(Ⅱ)若fx)=1,求x的值;

(Ⅲ)若fx)>f(2-x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學擬在高一下學期開設(shè)游泳選修課,為了了解高一學生喜歡游泳是否與性別有關(guān),該學校對100名高一新生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學生的概率為

(1)請將上述列聯(lián)表補充完整;

(2)并判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學生中隨機抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1)若函數(shù)區(qū)間單調(diào),求取值范圍;

(2)若函數(shù)無零點,求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知極點直角坐標系的原點重合,極軸與的正半軸重合,圓極坐標方程是,直線參數(shù)方程是參數(shù)).

(1)直線的交點,一動點,求最大值;

(2)若直線得的弦長,值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實數(shù)的值;

(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案