【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.

(Ⅰ)求橢圓的離心率及左焦點的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

【答案】(1);(2)證明見解析;(3)答案見解析.

【解析】

1)由題意可得,,據(jù)此確定離心率即可;

2)由題意可得.分類討論兩種情況證明直線與橢圓相切即可;

3)設(shè),,當(dāng)時,易得.當(dāng)時,聯(lián)立直線方程與橢圓方程可得,結(jié)合韋達定理和平面向量的數(shù)量積運算法則計算可得.據(jù)此即可證得為定值

1)由題意,

所以離心率,左焦點

2)由題知,,即.

當(dāng)時直線方程為,直線與橢圓相切.

當(dāng)時,由,

所以

故直線與橢圓相切.

3)設(shè),,

當(dāng)時,,,,

,

所以,即

當(dāng)時,由

,,

因為

所以,即

為定值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖1是由矩形和菱形組成的一個平面圖形,其中, ,將其沿折起使得重合,連結(jié),如圖2.

(1)證明圖2中的四點共面,且平面平面;

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】任意實數(shù),定義,設(shè)函數(shù),數(shù)列是公比大于0的等比數(shù)列,且,,則____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時,求曲線在點處的切線方程;

(2)當(dāng)時,求證:;

(3)討論函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個問題:“三百一十五里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還其大意為:“有一個人走315里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了 6天后到達目的地. ”則該人最后一天走的路程為( )

A.20里B.10里C.5 里D.2.5 里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,長半軸長與短半軸長的差為,離心率為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若在軸上存在點,過點的直線分別與橢圓相交于兩點,且為定值,求點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線:,為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)若直線的方程為,設(shè)的交點為,,的交點為,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線:為參數(shù)).在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)若直線的方程為,設(shè)的交點為,的交點為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年的政府工作報告強調(diào),要樹立綠水青山就是金山銀山理念,以前所未有的決心和力度加強生態(tài)環(huán)境保護.某地科技園積極檢查督導(dǎo)園區(qū)內(nèi)企業(yè)的環(huán)保落實情況,并計劃采取激勵措施引導(dǎo)企業(yè)主動落實環(huán)保措施,下圖給出的是甲、乙兩企業(yè)2012年至2017年在環(huán)保方面投入金額(單位:萬元)的柱狀圖.

(Ⅰ)分別求出甲、乙兩企業(yè)這六年在環(huán)保方面投入金額的平均數(shù);(結(jié)果保留整數(shù))

(Ⅱ)園區(qū)管委會為盡快落實環(huán)保措施,計劃對企業(yè)進行一定的獎勵,提出了如下方案:若企業(yè)一年的環(huán)保投入金額不超過200萬元,則該年不獎勵;若企業(yè)一年的環(huán)保投入金額超過200萬元,不超過300萬元,則該年獎勵20萬元;若企業(yè)一年的環(huán)保投入金額超過300萬元,則該年獎勵50萬元.

(ⅰ)分別求出甲、乙兩企業(yè)這六年獲得的獎勵之和;

(ⅱ)現(xiàn)從甲企業(yè)這六年中任取兩年對其環(huán)保情況作進一步調(diào)查,求這兩年獲得的獎勵之和不低于70萬元的概率.

查看答案和解析>>

同步練習(xí)冊答案