【題目】2018年元旦假期,高三的8名同學(xué)準(zhǔn)備拼車去旅游,其中班、班,班、班每班各兩名,分乘甲乙兩輛汽車,每車限坐4名同學(xué)乘同一輛車的4名同學(xué)不考慮位置,其中班兩位同學(xué)是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學(xué)中恰有2名同學(xué)是來自同一個班的乘坐方式共有
A. 18種 B. 24種 C. 48種 D. 36種
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,且,其中,,分別是,,的中點(diǎn),動點(diǎn)在線段上運(yùn)動時,下列四個結(jié)論:①;②;③面;④面,
其中恒成立的為( )
A. ①③ B. ③④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)f(x)=ax+ka-x,(a>0且a≠1,k∈R).
(1)求實(shí)數(shù)k的值;
(2)是否存在實(shí)數(shù)a,使函數(shù)y=(f(x)+2)ax在[-1,1]上的最大值為7?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x-a|+bx.
(1)若a=2,且f(x)是R上的增函數(shù),求實(shí)數(shù)b的取值范圍;
(2)當(dāng)b=0時,若關(guān)于x的方程f(x)=x+1有三個實(shí)根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗(yàn)公式,.今將120萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投資金額都不低于20萬元.
(Ⅰ)設(shè)對乙產(chǎn)品投入資金萬元,求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù),
(1)若函數(shù)為奇函數(shù),求m的值;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在上的最小值為,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國海軍,正在以不可阻擋的氣魄向深藍(lán)進(jìn)軍。在中國海軍加快建設(shè)的大背景下,國產(chǎn)水面艦艇噸位不斷增大、技術(shù)日益現(xiàn)代化,特別是國產(chǎn)航空母艦下水,航母需要大量高素質(zhì)航母艦載機(jī)飛行員。為此中國海軍在全國9省9所優(yōu)質(zhì)普通高中進(jìn)行海航班建設(shè)試點(diǎn)培育航母艦載機(jī)飛行員。2017年4月我省首屆海軍航空實(shí)驗(yàn)班開始面向全省遴選學(xué)員,有10000名初中畢業(yè)生踴躍報(bào)名投身國防,經(jīng)過文化考試、體格測試、政治考核、心理選拔等過程篩選,最終招收50名學(xué)員。培養(yǎng)學(xué)校在關(guān)注學(xué)員的文化素養(yǎng)同時注重學(xué)員的身體素質(zhì),要求每月至少參加一次野營拉練活動(下面簡稱“活動”)并記錄成績.10月某次活動中海航班學(xué)員成績統(tǒng)計(jì)如圖所示:
(Ⅰ)根據(jù)圖表,試估算學(xué)員在活動中取得成績的中位數(shù)(精確到);
(Ⅱ)根據(jù)成績從、兩組學(xué)員中任意選出兩人為一組,若選出成績分差大于,則稱該組為“幫扶組”,試求選出兩人為“幫扶組”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域?yàn)?/span>R,如果存在函數(shù)g(x),使得f(x)≥g(x)對于一切實(shí)數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(diǎn)(-1,0).
(1)若a=1,b=2.寫出函數(shù)f(x)的一個承托函數(shù)(結(jié)論不要求證明);
(2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個承托函數(shù),且f(x)為函數(shù)的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,在橢圓上(異于橢圓的左、右頂點(diǎn)),過右焦點(diǎn)作∠的外角平分線的垂線,交于點(diǎn),且(為坐標(biāo)原點(diǎn)),橢圓的四個頂點(diǎn)圍成的平行四邊形的面積為.
(1)求橢圓的方程;
(2)若直線:()與橢圓交于,兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,直線交軸于,求當(dāng)三角形的面積最大時,直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com