已知函數(shù)f(x)=2x-
k
x
+
k
3
(k∈R).
(1)若集合{x|f(x)=x,x∈R}中有且只有一個(gè)元素,求k的值;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是增函數(shù),求k的取值范圍.
分析:(1)由f(x)=x,變形為二次方程,根據(jù)△=0,求參數(shù)k的值;
(2)由增函數(shù)的定義知對任意的1<x1<x2,f(x1)-f(x2)<0,由此不等式得到k的關(guān)系式,求解即可得到k的取值范圍.
解答:解:(1)由f(x)=x得x2+
k
3
x-k=0
,由△=0,解得k=-36或k=0(舍),∴k=-36
(2)設(shè)1<x1x2,則f(x1)-f(x2)=
(x1-x2)(2x1x2+k)
x1x2
<0∴2x1x2+k>0
,
∴k>-2x1x2
∵-2x1x2<-2,
∴k≥-2.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的性質(zhì),解題的關(guān)鍵是將題設(shè)中所給的條件進(jìn)行正確轉(zhuǎn)化如(1)中,轉(zhuǎn)化一元二次方程有一根,(2)根據(jù)增函數(shù)的定義轉(zhuǎn)化出關(guān)于參數(shù)的不等式.本題考查了轉(zhuǎn)化化歸的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對稱中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊答案