【題目】平面直角坐標(biāo)系中,圓的圓心為.已知點,且為圓上的動點,線段的中垂線交于點.
(Ⅰ)求點的軌跡方程;
(Ⅱ)設(shè)點的軌跡為曲線,拋物線: 的焦點為., 是過點互相垂直的兩條直線,直線與曲線交于, 兩點,直線與曲線交于, 兩點,求四邊形面積的取值范圍.
【答案】(1);(2)四邊形面積的取值范圍是.
【解析】試題分析;(1)根據(jù)中垂線的幾何性質(zhì)得到 ,由橢圓的定義的到軌跡方程為;(2),聯(lián)立直線和橢圓得到二次方程,由弦長公式分別求得AC和BD,進而求得面積表達式,再由換元法得到最值.
解析:
(Ⅰ)∵為線段中垂線上一點,
∴ ,
∵, ,∵,
∴的軌跡是以, 為焦點,長軸長為的橢圓,
它的方程為.
(Ⅱ)∵的焦點為,
的方程為,
當(dāng)直線斜率不存在時, 與只有一個交點,不合題意.
當(dāng)直線斜率為時,可求得, ,
∴.
當(dāng)直線斜率存在且不為時,
方程可設(shè)為,代入得
, ,
設(shè), ,則, ,
.
直線的方程為與可聯(lián)立得,
設(shè), ,則,
∴四邊形的面積
.
令,則,
,
∴在是增函數(shù), ,
綜上,四邊形面積的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=emx+x2-mx.
(1)證明:f(x)在(-∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
(2)若對于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為, , 為橢圓的上頂點, 為等邊三角形,且其面積為, 為橢圓的右頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓相交于兩點(不是左、右頂點),且滿足,試問:直線是否過定點?若過定點,求出該定點的坐標(biāo),否則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中, , ,點為的中點,點為上一動點.
(I)是否存在一點,使得線段平面?若存在,指出點的位置,若不存在,請說明理由.
(II)若點為的中點且,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com