17.在△ABC中,角A,B,C的對邊邊長分別為a,b,c且滿足csinA=acosC,則$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)的最大值為2.

分析 由題意和正弦定理可得B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,進(jìn)而由三角函數(shù)公式可得$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=2sin(A+$\frac{π}{6}$),可得最值.

解答 解:∵在△ABC中,角A,B,C的對邊邊長分別為a,b,c且滿足csinA=acosC,
∴由正弦定理可得sinCsinA=sinAcosC,∵sinA≠0,
∴sinC=cosC,∴C=$\frac{π}{4}$,∴B=$\frac{3π}{4}$-A,0<A<$\frac{3π}{4}$,
∴$\sqrt{3}$sinA-cos(B+$\frac{π}{4}$)=$\sqrt{3}$sinA-cos($\frac{3π}{4}$-A+$\frac{π}{4}$)
=$\sqrt{3}$sinA+cosA=2sin(A+$\frac{π}{6}$),
∴當(dāng)A=$\frac{π}{3}$時,上式取到最大值2
故答案為:2

點評 本題考查三角函數(shù)的最值,涉及正弦定理和三角函數(shù)公式,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一個圓分成6個大小不等的小扇形,取來紅、黃、藍(lán)、白、綠、黑6種顏色,如圖.
(1)6個小扇形分別著上6種顏色,有多少種不同的方法?
(2)從這6種顏色中任選5種著色,但相鄰兩個扇形不能著相同的顏色,有多少種不同的方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$,$\overrightarrow$=3$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,其中$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xoy中,點P到兩點F(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0)的距離之和等于4,設(shè)P點的軌跡為曲線C,過點M(1,0)的直線l與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,長軸端點A與短軸端點B間的距離為$\sqrt{5}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P為橢圓C上一動點,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知一個幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.27-$\frac{3π}{2}$B.18-$\frac{3π}{2}$C.27-3πD.18-3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在幾何體ABCDN中,CD⊥平面ABC,DC∥AN,CD=2AN=4,又AB=AC=BC=2,點P是BD上的動點(與B、D兩點不重合).
(1)若P為BD的中點,求證:AP⊥BC;
(2)若二面角B-PC-A的余弦值為$\frac{2\sqrt{19}}{19}$,求直線PN與平面ABD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.一批產(chǎn)品共10件,其中7件正品,3件次品,每次從這批產(chǎn)品中任取一件,在下述三種情況下,分別求直至取得正品時所需次數(shù)ξ的概率分布列.
(1)每次取出的產(chǎn)品不再放回去;
(2)每次取出的產(chǎn)品仍放回去;
(3)每次取出一件次品后,總是另取一件正品放回到這批產(chǎn)品中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在△ABC中,AB=2,∠ABC=θ,AD是邊BC上的高,當(dāng)θ∈[$\frac{π}{6}$,$\frac{π}{3}$]時,$\overrightarrow{AD}$•$\overrightarrow{AC}$的最大值與最小值之差為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案