6.不等式x2(x+2)(x-1)<0的解為(-2,0)∪(0,1).

分析 根據(jù)不等式x2(x+2)(x-1)<0對應(yīng)的方程,求出實數(shù)根,再根據(jù)符號法則,寫出不等式的解集.

解答 解:不等式x2(x+2)(x-1)<0對應(yīng)的方程為
x2(x+2)(x-1)=0,
其實數(shù)根0,-2和1,
根據(jù)符號法則,寫出不等式x2(x+2)(x-1)<0的解集為
(-2,0)∪(0,1).
故答案為:(-2,0)∪(0,1).

點評 本題考查了利用不等式的解法與應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.某高中計劃從全校學生中按年級采用分層抽樣方法抽取20名學生進行心理測試,其中高三有學生900人,已知高一與高二共抽取了14人,則全校學生的人數(shù)為3000.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列寫法正確的是( 。
A.∅∈{0}B.∅⊆{0}C.0?∅D.∅∉∁R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.對于任意兩個正實數(shù)a,b,定義a*b=λ×$\frac{a}$.其中常數(shù)λ∈($\frac{\sqrt{2}}{2}$,1),“×”是通常的實數(shù)乘法運算,若a≥b>0,a*b與b*a都是集合{x|x=$\frac{n}{2}$,n∈Z}中的元素,則a*b=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a,b,c都是正數(shù),
(1)若a+c=1,試比較a3+a2c+ab2+b2c與a2b+abc的大。
(2)若a2+b2+c2=1,求證:$\frac{1}{{a}^{2}}+\frac{1}{^{2}}+\frac{1}{{c}^{2}}$-$\frac{2({a}^{3}+^{3}+{c}^{3})}{abc}$≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$2asinA=({2b+\sqrt{2}c})sinB+({2c+\sqrt{2}b})sinC$.
(1)求A的大小;
(2)若$a=3\sqrt{10},b=3\sqrt{2}$,D是BC的中點,求AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x\;({x≥0})}\\{{x^2}\;({x<0})}\end{array}}\right.$,則f (f(-3)) 的值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{e^x},x<2\\{log_3}(x-1),x≥2.\end{array}$,則f(f(f(10)))的值是1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)y=sin(2x+φ),φ∈(0,2π)的部分圖象如圖所示,則φ的值為( 。
A.$\frac{π}{3}$B.$\frac{4π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{4π}{3}$

查看答案和解析>>

同步練習冊答案