如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是多少?

解:∵EB、EC是⊙O的切線,
∴EB=EC,
又∵∠E=46°,
∴∠ECB=∠EBC=67°,
∴∠BCD=180°-(∠BCE+∠DCF)=180°-99°;
∵四邊形ADCB內(nèi)接于⊙O,
∴∠A+∠BCD=180°,
∴∠A=99°.
分析:根據(jù)切線長定理得EC=EB,則∠ECB=∠EBC=67°,再根結(jié)合內(nèi)接四邊形的對角互補得∠A=∠ECB+∠DCF=67°+32°=99°.
點評:此題綜合考查了切線長定理、圓內(nèi)接四邊形的性質(zhì)和等腰三角形的性質(zhì)以及三角形的內(nèi)角和定理等知識.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=50°,∠DCF=40°,則∠A的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

20、如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的大小為
99°
99°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評閱記分)
A.(選修4-5 不等式選講)
若任意實數(shù)x使m≥|x+2|-|5-x|恒成立,則實數(shù)m的取值范圍是
[7,+∞)
[7,+∞)
;
B.(選修4-1 幾何證明選講)
如圖:EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的度數(shù)是
99°
99°

C.(選修4-4坐標系與參數(shù)方程)
極坐標系下,直線ρcos(θ-
π
4
)=
2
與圓ρ=
2
的公共點個數(shù)是
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,EB、EC是⊙O的兩條切線,B、C是切點,A、D是⊙O上兩點,如果∠E=46°,∠DCF=32°,則∠A的大小為( 。
A、70°B、80°C、90°D、99°

查看答案和解析>>

同步練習冊答案