已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)M(1,2)作曲線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).
分析:(Ⅰ)設(shè)出動(dòng)點(diǎn)P的坐標(biāo),求出N點(diǎn)的坐標(biāo),再求出向量
PN
NF
,然后代入(
PN
+
1
2
NF
)•
NF
=0
整理即可得到點(diǎn)P的軌跡C的方程;
(Ⅱ)設(shè)出點(diǎn)A,B的坐標(biāo),寫(xiě)出直線MA,MB的方程,和拋物線聯(lián)立后利用根與系數(shù)關(guān)系求出A點(diǎn)和B點(diǎn)的縱坐標(biāo),然后求出兩縱坐標(biāo)的和與積,然后由直線方程的兩點(diǎn)式寫(xiě)出AB的直線方程,把兩縱坐標(biāo)的和與積代入直線方程后,利用直線系方程的知識(shí)可求出直線AB經(jīng)過(guò)的定點(diǎn).
解答:解:(Ⅰ)設(shè)曲線C上任意一點(diǎn)P(x,y),又F(1,0),N(-1,y),
從而
PN
=(-1-x,0)
,
NF
=(2,-y)

PN
+
1
2
NF
=(-1-x,0)+
1
2
(2,-y)
=(-x,-
1
2
y)
,
(
PN
+
1
2
NF
)•
NF
=0
,得(-x,-
1
2
y)•(2,-y)=0
,
-2x+
1
2
y2=0

化簡(jiǎn)得y2=4x,即為所求的P點(diǎn)的軌跡C的對(duì)應(yīng)的方程.
(Ⅱ)設(shè)A(x1,y1)、B(x2,y2),
MA:y=k1(x-1)+2,
MB:y=k2(x-1)+2.
將y=k1(x-1)+2與y2=4x聯(lián)立,得:k1y2-4y-4k1+8=0
y1+2=
4
k1
,得y1=
4
k1
-2

同理 y2=
4
k2
-2

而AB直線方程為:y-y1=
y2-y1
x2-x1
(x-x1)
,
y=
4
y1+y2
x+
y1y2
y1+y2

由①②:y1+y2=
4
k1
-2+
4
k2
-2=
4(k1+k2)
k1k2
-4=
-4
k1k2
-4

y1y2=4(
4
k1k2
-
2(k1+k2)
k1k2
+1)=4(
6
k1k2
+1)

代入③得,y=
4
-4
k1k2
-4
x+
24
k1k2
+4
-4
k1k2
-4
,
整理得k1k2(x+y+1)+6+y=0.
x+y+1=0
y+6=0   
x=5
y=-6
,故直線AB經(jīng)過(guò)定點(diǎn)(5,-6).
點(diǎn)評(píng):本題考查了拋物線的方程,考查了直線與拋物線的綜合,訓(xùn)練了一元二次方程的根與系數(shù)關(guān)系,考查了直線系方程,此題是有一定難度題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)M(1,2)作曲線C的兩條弦MD,ME,且MD,ME所在直線的斜率為k1,k2,滿足k1k2=1,
求證:直線DE過(guò)定點(diǎn),并求出這個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州模擬)已知F(1,0),P是平面上一動(dòng)點(diǎn),P在直線l:x=-1上的射影為點(diǎn)N,且滿足(
PN
+
1
2
NF
)•
NF
=0

(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)F的直線與軌跡C交于A、B兩點(diǎn),試問(wèn)在直線l上是否存在一點(diǎn)Q,使得△QAB為等邊三角形?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知F(1,0),P是平面上一動(dòng)點(diǎn),P到直線l:x=-1上的射影為點(diǎn)N,且滿足數(shù)學(xué)公式
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)點(diǎn)M(1,2)作曲線C的兩條弦MA,MB,設(shè)MA,MB所在直線的斜率分別為k1,k2,當(dāng)k1,k2變化且滿足k1+k2=-1時(shí),證明直線AB恒過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臺(tái)州市四校高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知F(1,0),P是平面上一動(dòng)點(diǎn),P在直線l:x=-1上的射影為點(diǎn)N,且滿足
(Ⅰ)求點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)F的直線與軌跡C交于A、B兩點(diǎn),試問(wèn)在直線l上是否存在一點(diǎn)Q,使得△QAB為等邊三角形?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案