【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中以為極點,軸非負半軸為極軸建立坐標系圓,直線的極坐標方程分別

,.

(Ⅰ)求交點的極坐標;

(Ⅱ)設的圓心, 交點連線的中點,已知直線的參數(shù)方程為

(為參數(shù)),求的值.

【答案】(1)(2)

【解析】分析:()先把圓,直線轉化為直角坐標方程,聯(lián)立方程即可求出交點的直角坐標;再把直角坐標轉化為極坐標即可。

() 先分別求出P、Q的坐標,然后求得PQ直線的方程;把直線PQ的直線參數(shù)方程轉化為直角坐標方程,根據(jù)系數(shù)相等即可求出的值。

詳解:(),直線的直角坐標方程分別為,

,得,或,

交點的極坐標為.

()(I),點的坐標分別為,故直線的直角坐標方程為,

由參數(shù)方程可得

解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,四邊形是矩形, ,平面平面.

(1)證明: ;

(2)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直二面角D—AB—E中,四邊形ABCD是邊長為2的正方形,AE=EB,FCE上的點,且BF平面ACE.

)求證AE平面BCE;

)求二面角B—AC—E的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,橢圓C的離心率是,拋物線E的焦點FC的一個頂點.

)求橢圓C的方程;

)設PE上的動點,且位于第一象限,E在點P處的切線C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M

i)求證:點M在定直線上;

ii)直線y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當a=3時,求A∩B;

(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓, 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某“ 型水渠南北向寬為,東西向寬為,其俯視圖如圖所示.假設水渠內的水面始終保持水平位置.

(1) 過點的一條直線與水渠的內壁交于兩點,且與水渠的一邊的夾角為為銳角),將線段的長度表示為的函數(shù);

(2) 若從南面漂來一根長度為的筆直的竹竿(粗細不計),竹竿始終浮于水平面內,且不發(fā)生形變,問:這根竹竿能否從拐角處一直漂向東西向的水渠(不會卡。吭囌f明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系,取相同的長度單位,若曲線的極坐標方程為,曲線的參數(shù)方程為為參數(shù)),設是曲線上任一點,是曲線上任一點.

(1)求交點的極坐標;

(2)已知直線,點在曲線上,求點的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認為收看開幕式與性別有關?

(Ⅱ)現(xiàn)從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男女學生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

同步練習冊答案