分析 由正弦定理可得sinC:sinA=c:a=4:$\sqrt{13}$,設(shè)c=4k,a=$\sqrt{13}$k.由已知可得13k2-16k+3=0.從而解得k的值,即可求得a、b、c的大。
解答 解:∵sinC:sinA=c:a=4:$\sqrt{13}$,
∴可設(shè)c=4k,a=$\sqrt{13}$k.
又a2-a-2c=2b,2c-a-3=2b,故a2-a-2c=2c-a-3.
∴13k2-$\sqrt{13}$k-8k=8k-$\sqrt{13}$k-3,即13k2-16k+3=0.…(6分)
∴k=$\frac{3}{13}$或k=1.
∵當(dāng)k=$\frac{3}{13}$時,b<0,故舍去,
∴k=1,
∴a=$\sqrt{13}$,…(8分)
∴b=$\frac{5-\sqrt{13}}{2}$,c=4.…(12分)
注:此評分標(biāo)準(zhǔn)僅供參考,估計考生會直接解方程組,建議先解出任一邊給(6分).
點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基本知識的考查.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{1}{3}$,1] | B. | ($\frac{1}{3}$,1) | C. | (-∞,$\frac{1}{3}$]∪[1,+∞) | D. | (-∞,$\frac{1}{3}$)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相切 | B. | 相交但直線不過圓心 | ||
C. | 相交且過圓心 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $ω=1,θ=\frac{π}{3}$ | B. | $ω=1,θ=-\frac{π}{3}$ | C. | $ω=\frac{1}{2},θ=\frac{π}{6}$ | D. | $ω=\frac{1}{2},θ=-\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com