18.設(shè)a=log0.32,b=log32,c=20.3,則這三個數(shù)的大小關(guān)系是(  )
A.b>c>aB.a>c>bC.a>b>cD.c>b>a

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=log0.32<0,0<b=log32<1,c=20.3>1,
∴c>b>a.
故選:D.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某商場出售一種商品,每天可賣1 000件,每件可獲利4元.據(jù)經(jīng)驗,若這種商品每件每降價0.1元,則比降價前每天可多賣出100件,為獲得最好的經(jīng)濟(jì)效益每件單價應(yīng)降低多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=sin2ωx在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上是減函數(shù).則實數(shù)ω的取值范圍是[-$\frac{3}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若執(zhí)行如圖偽代碼時沒有執(zhí)行y←x2+1,則輸入的x的取值范圍是x>2.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{7}}}{4}$,短軸的一個端點到右焦點的距離為4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若“橢圓的長半軸長為a,短半軸長為b時,則橢圓的面積是πab.”
請針對(1)中求得的橢圓,求解下列問題:
①若m,n∈R,且|m|≤4,|n|≤3,求點P(m,n)落在橢圓內(nèi)的概率;
②若m,n∈Z,且|m|≤4,|n|≤3,求點P(m,n)落在橢圓內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,△ABC為圓的內(nèi)接三角形,BD為圓的弦,且BD∥AC. 過點A作圓的切線與DB的延長線交于點E,AD與BC交于點F.若AB=AC,AE=3$\sqrt{5}$,BD=4則線段AF的長為$\frac{{5\sqrt{5}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=ln$\frac{3x}{2}-\frac{2}{x}$,則函數(shù)f(x)的零點所在區(qū)間為( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{{log}_{\frac{1}{2}}}x}&{x>0}\\{x+6}&{x≤0}\end{array}}$,則f(f(-4))的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求證:以拋物線y2=2px(p>0)上的任意不同的四點為頂點的四邊形不可能是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案