【題目】已知橢圓與雙曲線有相同的焦點,且橢圓與雙曲線交于一點

1)求的值;

2)若雙曲線上一點Q到左焦點的距離為3,求它到雙曲線右準線的距離.

【答案】1;(2

【解析】

1)由雙曲線方程判斷焦點在軸上,利用相同焦點和交點,列方程組求解即可;

2)由(1)知雙曲線方程,先判斷點在雙曲線左支上,利用雙曲線第二定義求出點到左準線的距離,再求解點到右準線的距離即可.

1)由雙曲線方程可知,焦點在軸上,

橢圓和雙曲線有相同的焦點,可得①,

又交于點,,

,,所以②,

聯(lián)立①②,解得,;

2)由(1)知,雙曲線,所以,,,

所以左焦點,左準線,右準線,

雙曲線右支上一點到左焦點最小距離,

所以點在雙曲線的左支上,設點到左準線的距離為,

由雙曲線第二定義,,所以,

所以點到右準線的距離.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線關于軸對稱,它的頂點在坐標原點,點、、均在拋物線上.

1)寫出該拋物線的方程及其準線方程;

2)當的斜率存在且傾斜角互補時,求的值及直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面底面,的中點,是棱上的點,,

1求證:平面平面;

2,求二面角的大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,且曲線處有相同的切線.

(Ⅰ)求實數(shù)的值;

(Ⅱ)求證:上恒成立;

(Ⅲ)當時,求方程在區(qū)間內(nèi)實根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,,斜邊可以通過以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點的斜邊上.

1)求證:平面平面;

2)求直線與平面所成角的正弦的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙的切線,交⊙E,過E的切線與交于D.

(I)求證:;

(II)若,,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(α)=

(1)化簡f(α);

(2)α是第三象限角,cos(α)=,求f(α);

(3)α=-1860°,求f(α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,射線的普通方程為,曲線的參數(shù)方程為為參數(shù)).O為極點,x軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)寫出的極坐標方程;

2)設的交點為P(點P不為極點),的交點為Q,當上變化時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程是,曲線的參數(shù)方程為:為參數(shù)).

1)求曲線,的直角坐標方程;

2)設曲線,交于點,,已知點,求.

查看答案和解析>>

同步練習冊答案