已知全集U=R,集合A={x|-1≤x<3},B={0,2,4,6},則A∩B等于( 。
A、{0,2}
B、{-1,0,2}
C、{x|0≤x≤2}
D、{x|-1≤x≤2}
考點:交集及其運算
專題:集合
分析:根據(jù)A與B,找出A與B的交集即可.
解答: 解:∵A={x|-1≤x<3},B={0,2,4,6},
∴A∩B={0,2}.
故選:A.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)為偶函數(shù),當x≥0時,f(x)=(
1
2
x,則不等式f(x)≥
1
2
的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(3x-1)2014=a0+a1x+a2x2+…+a2014x2014(x∈R),則
1
3
+
a2
32a1
+
a3
33a1
+…+
a2014
32014a1
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x2+ax,x∈R,常數(shù)a∈R,則( 。
A、存在a,使f(x)是奇函數(shù)
B、存在a,使f(x)是偶函數(shù)
C、?a∈R,f(x)在(0,+∞)上是增函數(shù)
D、?a∈R,f(x)在(-∞,0)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為( 。
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=sin(2x+
π
3
),則下列結論正確的是( 。
A、f(x)的圖象關于直線x=
π
3
對稱
B、f(x)的圖象關于點(
π
4
,0)對稱
C、f(x)的最小正周期為
π
2
D、f(x)在[0,
π
12
]上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動點P在函數(shù)y=sin2x的圖象上移動,動點Q(x,y)滿足
PQ
=(
π
8
,0),則動點Q的軌跡方程為(  )
A、y=sin(2x+
π
8
B、y=sin(2x-
π
8
C、y=sin(2x+
π
4
D、y=sin(2x-
π
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點F為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)右焦點,圓A:(x+t)2+y2=2(t>0)與橢圓C的一個公共點為B(0,1),且直線FB與圓A相切于點B.
(Ⅰ)求t的值及橢圓C的標準方程;
(Ⅱ)設動點P(x0,y0)滿足
OP
=
OM
+3
ON
,其中M、N是橢圓C上的點,O為原點,直線OM與ON的斜率之積為-
1
2
,求證:x02+2y02為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,f(x)=
a
a2-1
(ax-a-x
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調性,并證明;
(3)當函數(shù)f(x)的定義域為(-1,1)時,求使f(1-m)+f(1-m2)<0成立的實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案