分析 函數(shù)y=f(x)是R上的奇函數(shù),在區(qū)間(0,+∞)單調遞增即在R上單調遞增,f(-2)=-f(2)=0,即f(2)=0,分段討論x的值,可得不等式xf(x)<0的解集.
解答 解:函數(shù)y=f(x)是R上的奇函數(shù),在區(qū)間(0,+∞)單調遞增
∴函數(shù)y=f(x)在R上單調遞增,且f(0)=0
∵f(-2)=-f(2)=0,即f(2)=0.
∴當x<-2時,f(x)<0,
當-2<x<0時,f(x)>0,
當0<x<2時,f(x)<0,
當x>2時,f(x)>0,
那么:xf(x)<0,即$\left\{\begin{array}{l}{x>0}\\{f(x)<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{f(x)>0}\end{array}\right.$,
∴得:-2<x<0或0<x<2.
故答案為(-2,0)∪(0,2).
點評 本題考查了分段函數(shù)的奇偶性和單調性的運用,考查了討論的思想.屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3-4i | B. | 3+4i | C. | 5-4i | D. | 5+4i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{9}{5}$,3] | B. | (-∞,3] | C. | [3,+∞) | D. | (2,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,3,4,5,6} | B. | {1,3,5} | C. | {2,4,6} | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①②③④ | B. | ①②③ | C. | ②③ | D. | ② |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com