8.作出下列函數(shù)的圖象:
(1)y=2-x,x∈[0,2];
(2)y=-x2+3x+4;
(3)y=$\frac{1}{2x}$.

分析 作函數(shù)圖象主要有兩種思路:①利用列表描點法,②轉(zhuǎn)化為基礎(chǔ)函數(shù),利用基本函數(shù)圖象作復(fù)雜函數(shù)圖象.

解答 解:(1)y=2-x,x∈[0,2];

(2)y=-x2+3x+4=-(x-$\frac{3}{2}$)2+$\frac{25}{4}$;

(3)y=$\frac{1}{2x}$.

點評 本題考查函數(shù)圖象的作法,考查學(xué)生的作圖能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求值:lg5•lg400+(lg2${\;}^{\sqrt{2}}$)2
(2)已知x=log23,求$\frac{{8}^{x}+{8}^{-x}}{{2}^{x}+{2}^{-x}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$\frac{3sinα-cosα}{2sinα+3cosα}$=$\frac{8}{9}$,求tanα的值;
(2)已知0<α<$\frac{π}{2}$,sinα=$\frac{4}{5}$,求$\frac{si{n}^{2}α+2sinαcosα}{co{s}^{2}α+1-2si{n}^{2}α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)在(-1,1)上是奇函數(shù),且在[0,1)上單調(diào)遞增,判斷f(-$\frac{1}{π}$),f($\frac{1}{2}$),f($-\frac{1}{4}$)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求函數(shù)y=$\sqrt{tanx-1}$+lg(cosx-$\frac{1}{2}$)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知a∈{x|($\frac{1}{2}$)x-x=0},則f(x)=loga(4+3x-x2)的單調(diào)減區(qū)間為(-1,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知雙曲線的中心在原點,兩對稱軸都在坐標(biāo)軸上,且過P1(-2,$\frac{3\sqrt{5}}{2}$)和P2($\frac{4\sqrt{7}}{3}$,4)兩點,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若直線(m-1)x+my+1=0的斜率等于2,則實數(shù)m的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2x-$\frac{1}{{{2^{|x|}}}}$.
(1)求函數(shù)y=f(x)的零點的集合;
(2)若對于t∈[1,2]時,不等式2tf(2t)+mf(t)≥0恒成立,求實數(shù)m的取值范圍;
(3)若0≤x≤2,求函數(shù)h(x)=2x[f(x)+a]的最小值g(a).

查看答案和解析>>

同步練習(xí)冊答案