(2013•東城區(qū)一模)如圖,已知ACDE是直角梯形,且ED∥AC,平面ACDE⊥平面ABC,∠BAC=∠ACD=90°,AB=AC=AE=2,ED=
12
AB
,P是BC的中點(diǎn).
(Ⅰ)求證:DP∥平面EAB;
(Ⅱ)求平面EBD與平面ABC所成銳二面角大小的余弦值.
分析:(I)取AB的中點(diǎn)F,連接PF,EF.利用三角形的中位線定理可得FP
.
1
2
AC
.再利用已知條件和平行四邊形的判定定理可得四邊形EFPD是平行四邊形,可得PD∥EF.利用線面平行的判定定理即可得出;
(II)通過建立空間直角坐標(biāo)系,利用兩個(gè)平面的法向量的夾角即可得出二面角.
解答:(I)證明:取AB的中點(diǎn)F,連接PF,EF.
又∵P是BC的中點(diǎn),∴FP
.
1
2
AC

ED=
1
2
AB=
1
2
AC
,ED∥AC,
FP
.
ED

∴四邊形EFPD是平行四邊形,
∴PD∥EF.
而EF?平面EAB,PD?平面EAB,
∴PD∥平面EAB.
(II)∵∠BAC=90°,平面ACDE⊥平面ABC,∴BA⊥平面ACDE.
以點(diǎn)A為坐標(biāo)原點(diǎn),直線AB為x軸,AC為y軸,建立如圖所示的空間直角坐標(biāo)系,
則z軸在平面EACD內(nèi).則A(0,0,),B(2,0,0),E(0,1,
3
)
,D(0,2,
3
)

EB
=(2,-1,-
3
)
,
ED
=(0,1,0)

設(shè)平面EBD的法向量
n
=(x,y,z)
,由
n
EB
=0
n
ED
=0
,得
2x-y-
3
z=0
y=0

取z=2,則x=
3
,y=0.∴
n
=(
3
,0,2)

可取
m
=(0,0,1)
作為平面ABC的一個(gè)法向量,
cos<
m
,
n
=
m
n
|
m
| |
n
|
=
2
7
=
2
7
7

即平面EBD與平面ABC所成銳二面角大小的余弦值為
2
7
7
點(diǎn)評:熟練掌握三角形的中位線定理、平行四邊形的判定和性質(zhì)定理、線面平行的判定定理、面面垂直的性質(zhì)定理、通過建立空間直角坐標(biāo)系并利用兩個(gè)平面的法向量的夾角得出二面角等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)設(shè)A是由n個(gè)有序?qū)崝?shù)構(gòu)成的一個(gè)數(shù)組,記作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)稱為數(shù)組A的“元”,S稱為A的下標(biāo).如果數(shù)組S中的每個(gè)“元”都是來自 數(shù)組A中不同下標(biāo)的“元”,則稱A=(a1,a2,…,an)為B=(b1,b2,…bn)的子數(shù)組.定義兩個(gè)數(shù)組A=(a1,a2,…,an),B=(b1,b2,…,bn)的關(guān)系數(shù)為C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
,
1
2
)
,B=(-1,1,2,3),設(shè)S是B的含有兩個(gè)“元”的子數(shù)組,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
,
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S為B的含有三個(gè)“元”的子數(shù)組,求C(A,S)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)某游戲規(guī)則如下:隨機(jī)地往半徑為1的圓內(nèi)投擲飛標(biāo),若飛標(biāo)到圓心的距離大于
1
2
,則成績?yōu)榧案;若飛標(biāo)到圓心的距離小于
1
4
,則成績?yōu)閮?yōu)秀;若飛標(biāo)到圓心的距離大于
1
4
且小于
1
2
,則成績?yōu)榱己,那么在所有投擲到圓內(nèi)的飛標(biāo)中得到成績?yōu)榱己玫母怕蕿椋ā 。?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)函數(shù)f(x)=sin(x-
π
3
)
的圖象為C,有如下結(jié)論:
①圖象C關(guān)于直線x=
6
對稱;
②圖象C關(guān)于點(diǎn)(
3
,0)
對稱;
③函數(shù)f(x)在區(qū)間[
π
3
,
6
]
內(nèi)是增函數(shù),
其中正確的結(jié)論序號是
①②③
①②③
.(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)已知全集U={1,2,3,4},集合A={1,2},那么集合?UA為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)一模)數(shù)列{an}的各項(xiàng)排成如圖所示的三角形形狀,其中每一行比上一行增加兩項(xiàng),若an=an(a≠0),則位于第10行的第8列的項(xiàng)等于
a89
a89
,a2013在圖中位于
第45行的第77列
第45行的第77列
.(填第幾行的第幾列)

查看答案和解析>>

同步練習(xí)冊答案