1.函數(shù)f(x)是定義在(-2,2)上的減函數(shù),則不等式f(x)>f(2-x)的解集為( 。
A.(0,1)B.(0,2)C.(2,+∞)D.(-∞,2)

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì)建立不等式關(guān)系進行求解即可.

解答 解:∵函數(shù)f(x)是定義在(-2,2)上的減函數(shù),
∴不等式f(x)>f(2-x)等價為$\left\{\begin{array}{l}{-2<x<2}\\{-2<2-x<2}\\{x<2-x}\end{array}\right.$,
即$\left\{\begin{array}{l}{-2<x<2}\\{0<x<4}\\{x<1}\end{array}\right.$,解得0<x<1,
故不等式的解集為(0,1),
故選:A

點評 本題主要考查不等式的求解,根據(jù)函數(shù)單調(diào)性和定義域建立不等式關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$
(1)求△ABC的周長;
(2)求sin(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.2)-2×$\frac{2}{25}$-(0.081)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.$f(x)=|x|,g(x)=\sqrt{x^2}$B.f(x)=lgx2,g(x)=2lgx
C.$f(x)=\frac{{{x^2}-1}}{x-1},g(x)=x-1$D.$f(x)=\sqrt{x+1}•\sqrt{x-1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖中甲、乙、丙所示,下面是三個幾何體的三視圖,相應的標號是( 。
①長方體 ②圓錐 ③三棱錐 ④圓柱.
A.②①③B.①②③C.③②④D.④③②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.解關(guān)于x的不等式ax2-(2a+2)x+4>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓的一個頂點為A1(0,-$\sqrt{2}$),焦點在x軸上.若右焦點到直線x-y+2$\sqrt{2}$=0的距離3
(1)求橢圓的標準方程;
(2)過點M(1,1)的直線與橢圓交于A、B兩點,且M點為線段AB的中點,求直線AB的方程及|AB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在直三棱柱A1B1C1-ABC中,AC⊥BC,D、E分別為AB、AC中點.
(1)求證:DE∥面BCC1B1
(2)若CB=1,$AC=\sqrt{3}$,$A{A_{\;\;1}}=\sqrt{3}$.求異面直線A1E和CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.求y=lnx在x=1處的切線方程y=x-1.

查看答案和解析>>

同步練習冊答案