【題目】如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAEBD=2AE,AEABMAB的中點(diǎn).

(1)證明:CMDE

(2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.

【答案】1)見解析;(2邊上靠近的三等分點(diǎn);證明見解析.

【解析】

1)根據(jù)等邊三角形證得,再根據(jù)面面垂直的性質(zhì)定理得到線面垂直,利用線面垂直的性質(zhì)得到結(jié)論;(2)取面,當(dāng)上一點(diǎn)連線構(gòu)成平面時(shí),根據(jù)線面平行性質(zhì)定理可知:所得平面與面的交線必平行于;兩面已有一個(gè)交點(diǎn),則只需過(guò)的平行線,與交點(diǎn)即為,根據(jù)長(zhǎng)度關(guān)系可知:邊上靠近的三等分點(diǎn);通過(guò)找中點(diǎn),易證得中點(diǎn);根據(jù)平行線分線段成比例和長(zhǎng)度關(guān)系可證得,從而證得,再利用三角形中位線得,從而有,根據(jù)線面平行判定定理,可證得結(jié)論成立.

1 為等邊三角形,且中點(diǎn)

又平面平面,平面平面平面

平面

平面

2邊上靠近的三等分點(diǎn),證明如下:

中點(diǎn),連接

中點(diǎn),連接;連接

,中點(diǎn), 中點(diǎn)

邊上靠近的三等分點(diǎn)

分別為中點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在一個(gè)周期內(nèi)的圖像如圖所示.

(I)求函數(shù)的解析式;

(II)設(shè),且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍以及這兩個(gè)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α∈( ,π),sinα=
(1)求sin( +α)的值;
(2)求cos( ﹣2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=exg(x)=xb,b∈R.

(1)若函數(shù)f (x)的圖象與函數(shù)g(x)的圖象相切,求b的值;

(2)設(shè)T(x)=f (x)+ag(x),a∈R,求函數(shù)T(x)的單調(diào)增區(qū)間;

(3)設(shè)h(x)=|g(x)|·f (x),b1.若存在x1x2 [0,1],使|h(x1)-h(x2)|1成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定橢圓C(ab0),稱圓C1x2y2a2b2為橢圓C伴隨圓.已知橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)(01)

1)求實(shí)數(shù)a,b的值;

2)若過(guò)點(diǎn)P(0,m)(m0)的直線l與橢圓C有且只有一個(gè)公共點(diǎn),且l被橢圓C的伴隨圓C1所截得的弦長(zhǎng)為2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙3人投籃,投進(jìn)的概率分別是.

(Ⅰ)現(xiàn)3人各投籃1,3人都沒(méi)有投進(jìn)的概率;

(Ⅱ)表示乙投籃3次的進(jìn)球數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交通指數(shù)是指交通擁堵指數(shù)的簡(jiǎn)稱,是綜合反映道路網(wǎng)暢通或擁堵的概念性指數(shù)值,記交通指數(shù)為,其范圍為,分別有五個(gè)級(jí)別:,暢通;,基本暢通;,輕度擁堵;,中度擁堵;,嚴(yán)重?fù)矶?在晚高峰時(shí)段(),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的頻率分布直方圖如圖所示.

(1)求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范蔚膫(gè)數(shù);

(2)用分層抽樣的方法從輕度擁堵、中度擁堵、嚴(yán)重?fù)矶碌穆范沃泄渤槿?個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);

(3)從(2)中抽取的6個(gè)路段中任取2個(gè),求至少有1個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)100位居民的人均月用水量(單位:)的分組及各組的頻數(shù)如下:

,4; ,8; ,15;

,22; ,25; ,14;

,6; ,4; ,2.

(1)列出樣本的頻率分布表;

(2)畫出頻率分布直方圖,并根據(jù)直方圖估計(jì)這組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);

(3)當(dāng)?shù)卣贫巳司掠盟繛?/span>的標(biāo)準(zhǔn),若超出標(biāo)準(zhǔn)加倍收費(fèi),當(dāng)?shù)卣f(shuō),以上的居民不超過(guò)這個(gè)標(biāo)準(zhǔn),這個(gè)解釋對(duì)嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案