已知圓x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求證:不論m為何值,圓心在同一直線l上;
(2)與l平行的直線中,哪些與圓相交、相切、相離;
(3)求證:任何一條平行于l且與圓相交的直線被各圓截得的弦長(zhǎng)相等.
(1)證明略(2)當(dāng)-5-3<b<5-3時(shí),直線與圓相交;
當(dāng)b=±5-3時(shí),直線與圓相切;當(dāng)b<-5-3或b>5-3時(shí),直線與圓相離.
(3)證明略
(1)證明 配方得:(x-3m)2+[y-(m-1)]2=25,
設(shè)圓心為(x,y),則消去m得
l:x-3y-3=0,則圓心恒在直線l:x-3y-3=0上.
(2)解 設(shè)與l平行的直線是l1:x-3y+b=0,
則圓心到直線l1的距離為
d=.
∵圓的半徑為r=5,
∴當(dāng)d<r,即-5-3<b<5-3時(shí),直線與圓相交;
當(dāng)d=r,即b=±5-3時(shí),直線與圓相切;
當(dāng)d>r,即b<-5-3或b>5-3時(shí),直線與圓相離.
(3)證明 對(duì)于任一條平行于l且與圓相交的直線l1:x-3y+b=0,由于圓心到直線l1的距離d=,
弦長(zhǎng)=2且r和d均為常量.
∴任何一條平行于l且與圓相交的直線被各圓截得的弦長(zhǎng)相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過(guò)坐標(biāo)原點(diǎn),求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com