(12分)已知函數(shù).
(Ⅰ)若,求曲線在處切線的斜率;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得 ,求的取值范圍.
(Ⅰ)曲線在處切線的斜率為.
(Ⅱ)函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為. (Ⅲ).
【解析】本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。
(1)利用導(dǎo)數(shù)的幾何意義求解切線方程關(guān)鍵是切點(diǎn)坐標(biāo)和該點(diǎn)的導(dǎo)數(shù)值。
(2)求解定義域和導(dǎo)數(shù),利用導(dǎo)數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系得到結(jié)論。
(3)由已知,轉(zhuǎn)化為.
由(Ⅱ)知,當(dāng)a0時(shí),f(x)在x>0上單調(diào)遞增,值域?yàn)镽,故不符合題意.
當(dāng)a<0時(shí),f(x)在上單調(diào)遞增,在上單調(diào)遞減,
故f(x)的極大值即為最大值,進(jìn)而得到。
解(Ⅰ)由已知,
.
曲線在處切線的斜率為.
(Ⅱ).
①當(dāng)時(shí),由于,故,
所以,的單調(diào)遞增區(qū)間為.
②當(dāng)時(shí),由,得.
在區(qū)間上,,在區(qū)間上,
所以,函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(Ⅲ)由已知,轉(zhuǎn)化為.
由(Ⅱ)知,當(dāng)時(shí),在上單調(diào)遞增,值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012102514284609377312/SYS201210251429241250152735_DA.files/image029.png">,故不符合題意.
(或者舉出反例:存在,故不符合題意.)
當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減,
故的極大值即為最大值,,
所以,
解得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)令,是否存在實(shí)數(shù)a,當(dāng)(e是自然常數(shù))時(shí),函數(shù)的最小值是3,若存在,求出a的值,若不存在,說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南省南陽(yáng)市高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),若,則實(shí)數(shù)的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆安徽省高三第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題14分) 已知函數(shù),若
(1)求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)當(dāng)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省鎮(zhèn)江市09-10學(xué)年高二第二學(xué)期期末考試數(shù)學(xué)試題文科 題型:填空題
已知函數(shù),若為奇函數(shù),則 ▲
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆吉林省高三年級(jí)12月聯(lián)考理科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù),若,,則
(A) (B)
(C) (D)與的大小不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com