12.已知如圖所示的非零向量$\overrightarrow{a}$,$\overrightarrow$,請分別作出滿足下列條件的向量$\overrightarrow{c}$.
(1)$\overrightarrow{c}$=2$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$;
(2)$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-2$\overrightarrow$.

分析 直接運用向量加法的三角形法則,減法的三角形法則畫圖.

解答 (1)$\overrightarrow{c}$=2$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$,畫圖過程如下:
將$\overrightarrow{a}$伸長一倍(紅線),
將$\overrightarrow$縮短到一半(藍線),
根據(jù)向量加法的“三角形法則”,
將它們首尾相連,
得到綠線,就是$\overrightarrow{c}$;
(2)$\overrightarrow{c}$=$\frac{1}{2}$$\overrightarrow{a}$-2$\overrightarrow$,畫圖過程如下:
將$\overrightarrow{a}$縮短到一半(紅線),
將$\overrightarrow$伸長一倍(藍線),
根據(jù)向量減法的“三角形法則”,
將它們起點重合,
連接兩向量的終點,
得到綠線,就是$\overrightarrow{c}$;

點評 本題主要考查了向量加法的三角形法則和減法的三角形法則,運用幾何圖形表示向量的運算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,cosA=$\frac{3}{5}$,且cosB=$\frac{5}{13}$.則cosC的值是$\frac{33}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an},并且an=$\left\{\begin{array}{l}{{n}^{2}-5xn+8,n≤5且n{∈N}^{*}}\\{(x-23{)log}_{2}(n-4),n>5且n{∈N}^{*}}\end{array}\right.$,若{an}是遞減數(shù)列,則實數(shù)x的取值范圍是[2,23).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.不等式x2≤4的解集是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|$\frac{2x-1}{{x}^{2}+3x+2}$>0},B={x|x2+ax+b≤0},A∩B=($\frac{1}{2}$,3],試求a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.2015年6月中旬,經(jīng)過北京市自住房搖號,洪某搖中一套兩居室自住房,戶型面積為84m2,銷售均價為28000元/m2,他打算采用公積金貸款的方式繳納房款,經(jīng)查詢,五年以上公積金貸款利率為4%,五年及以下公積金貸款利率為3.5%,經(jīng)過盤算.洪某打算貸款額度為所購住房價款的70%(四舍五入精確到萬),并選擇等額本息的還款方式還25年,但當(dāng)他準備貸款時,公積金貸款利率自2015年6月28日調(diào)整了,五年以上公積金貸款利率為3.5%,五年及以下公積金貸款利率為3%.問:
(1)在原公積金貸款利率下,洪某每月需要還款多少(精確到元)?25年總共還多少利息?
(2)若洪某以之前設(shè)定好的每月還款額還款(四舍五入到整數(shù)元),在調(diào)整了公積金貸款利率后需要還多少年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在正方體中ABCD-A1B1C1D1中,直線AD1與平面B1CD1所成的角的正弦值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在正方體ABCD-A1B1C1D1中,過DD1的中點作直線l,使得l與BD1所成角為40°,且與平面A1ACC1所成角為50°,則l的條數(shù)為(  )
A.1B.2C.3D.無數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知x2+y2+z2=1(x>0),則2$\sqrt{3}xy+4yz+{z^2}$的最大值是3,取到最大值時的x=$\frac{\sqrt{7}}{7}$,y=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

同步練習(xí)冊答案