過橢圓數(shù)學公式+數(shù)學公式=1(a>b>0)的焦點垂直于x軸的弦長為數(shù)學公式a,則雙曲線數(shù)學公式-數(shù)學公式=1的離心率e的值是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
B
分析:依題意,利用橢圓的通經(jīng)=a,可求得=,從而可求得雙曲線-=1的離心率e的值.
解答:據(jù)題意知,橢圓通徑長為a,
故有=a?a2=4b2?=
故相應雙曲線的離心率e===
故選B.
點評:本題考查橢圓與雙曲線的簡單性質(zhì),考查轉(zhuǎn)化思想與運算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:《2.1 橢圓》2013年同步練習2(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:《第2章 圓錐曲線與方程》2013年單元測試卷(梅河口五中)(解析版) 題型:選擇題

以過橢圓+=1(a>b>0)的右焦點的弦為直徑的圓與其右準線的位置關系是( )
A.相交
B.相切
C.相離
D.不能確定

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年重慶市第二外國語學校高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

(如圖)過橢圓=1(a>b>0)的左焦點F任作一條與兩坐標軸都不垂直的弦AB;若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”.
(1)求橢圓=1的“左特征點”M的坐標.
(2)試根據(jù)(1)中的結論猜測:橢圓=1(a>b>0)的“左特征點”M是一個怎么樣的點?并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年遼寧省沈陽市翔宇中學高二(上)11月月考數(shù)學試卷(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學第一輪復習鞏固與練習:圓錐曲線方程(解析版) 題型:選擇題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F(xiàn)2為右焦點,若∠F1PF2=60°,則橢圓的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案