某興趣小組對偶函數(shù)f(x)的性質(zhì)進行研究,發(fā)現(xiàn)函數(shù)f(x)在定義域R上滿足f(x+2)=f(x)+f(1)且在區(qū)間[0,1]上為增函數(shù),在此基礎(chǔ)上,本組同學(xué)得出以下結(jié)論,其中錯誤的是( )
A.函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱
B.函數(shù)y=f(x)的周期為2
C.當x∈[-3.-2]時f'(x)≥0
D.函數(shù)f(x)的圖象上橫坐標為偶數(shù)的點都是函數(shù)的極小值點
【答案】分析:A選項先確定f(1)=f(-1)=0,從而再由f(x+2)=f(x),及f(x)為偶函數(shù),可得出f(1+x)=f(1-x)即可證明命題為真;
B選項根據(jù)f(x+2)=f(x),可知f(x) 的周期為2;
C選項由f(x)在[0,1]上單調(diào)遞增,f(x)為偶函數(shù)可推知f(x)在[-1,0]上單調(diào)遞減;又因為f(x)是周期為2的函數(shù),所以f(x)在[-1+2k,2k]k∈Z上單調(diào)遞減,從而f(x)在[-3,-2]上單調(diào)遞減,故f′(x)≤0;
D選項根據(jù)R上的偶函數(shù)在區(qū)間[0,1]上為增函數(shù),可知0是函數(shù)的極小值點,根據(jù)f(x) 的周期為2,可知函數(shù)y=f(x)的圖象上橫坐標為偶數(shù)的點都是函數(shù)的極小值點,
故可得選出正確選項.
解答:解:對于A選項,f(-1+2)=f(-1)+f(1),∴f(-1)=0,又知f(x)為偶函數(shù),
∴f(1)=f(-1)=0,∴f(x+2)=f(x)
∵f(x)為偶函數(shù),∴f(x+2)=f(-x),∴f(1+x)=f(1-x),
∴函數(shù)y=f(x)的圖象關(guān)于直線x=1對稱,故A正確;
B選項根據(jù)f(x+2)=f(x),可知f(x) 的周期為2,故B正確;
C選項由f(x)在[0,1]上單調(diào)遞增,f(x)為偶函數(shù)可推知f(x)在[-1,0]上單調(diào)遞減;
又因為f(x)是周期為2的函數(shù),所以f(x)在[-1+2k,2k]k∈Z上單調(diào)遞減,從而f(x)在[-3,-2]上單調(diào)遞減,故f′(x)≤0,所以C不正確;
D選項根據(jù)R上的偶函數(shù)在區(qū)間[0,1]上為增函數(shù),可知0是函數(shù)的極小值點,根據(jù)f(x) 的周期為2,可知函數(shù)y=f(x)的圖象上橫坐標為偶數(shù)的點都是函數(shù)的極小值點,所以D正確
故正確結(jié)論的序號是A,B,D,錯誤的是C
故選C
點評:本題綜合考查偶函數(shù)的性質(zhì),考查函數(shù)的周期性,函數(shù)的對稱性,合理運用條件進行轉(zhuǎn)化是解題的關(guān)鍵