14.若cos($\frac{π}{2}+α$)=$\frac{3}{5}$,則cos2α=( 。
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.一$\frac{16}{25}$D.$\frac{16}{25}$

分析 由已知利用誘導(dǎo)公式可求sinα的值,進(jìn)而利用二倍角的余弦函數(shù)公式即可計(jì)算得解.

解答 解:∵cos($\frac{π}{2}+α$)=$\frac{3}{5}$,可得:-sinα=$\frac{3}{5}$,
∴sinα=-$\frac{3}{5}$,
∴cos2α=1-2sin2α=1-2×(-$\frac{3}{5}$)2=$\frac{7}{25}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,二倍角的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)=2sinx+1,則f′($\frac{π}{4}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求下列直線的一個(gè)法向量、一個(gè)方向向量和斜率k(如果斜率存在的話)
(1)x-3y+5=0;
(2)y=3x+7;
(3)2x+5=0;
(4)4y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓C1:(x-a)2+y2=4與圓C2:x2+(y-$\sqrt{5}$)2=a2相外切,則實(shí)數(shù)a的值為( 。
A.$\frac{1}{4}$B.$\frac{1}{4}$或-$\frac{1}{4}$C.$\frac{1}{2}$或-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{2}$+y2=1.
(Ⅰ)求橢圓C的長(zhǎng)軸和短軸的長(zhǎng),離心率e,左焦點(diǎn)F1
(Ⅱ)經(jīng)過橢圓C的左焦點(diǎn)F1作直線l,直線l與橢圓C相交于A,B兩點(diǎn),若|AB|=$\frac{8\sqrt{2}}{7}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的外接球的半徑為( 。
A.2$\sqrt{3}$B.$\sqrt{3}$C.3$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若復(fù)數(shù)$z=\frac{1-i}{i}$(i為虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline z$=( 。
A.1+iB.-1+iC.l-iD.-1一i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左、右焦點(diǎn)分別為${F_1},F(xiàn)_2^{\;}$,上、下頂點(diǎn)分別為B1,B2,右頂點(diǎn)為A,直線AB1與B2F1交于點(diǎn)D.若2|AB1|=3|B1D|,則C的離心率等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,菱形ABEF⊥直角梯形ABCD,∠BAD=∠CDA=90°,∠ABE=60°,AB=2AD=2CD=2,H是EF的中點(diǎn)
(1)求證:平面AHC⊥平面BCE; 
(2)求此幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案