在△ABC中,設(shè)a+c=2b,A-C=
π3
,求sinB的值.
分析:先根據(jù)正弦定理可知sinA+sinC=2sinB,利用和差化積公式化簡整理后,求得sin
B
2
,進(jìn)而根據(jù)同角三角函數(shù)的基本關(guān)系求得cos
B
2
,最后通過倍角公式求得sinB.
解答:解:∵a+c=2b∴sinA+sinC=2sinB,,即2sin
A+C
2
cos
A-C
2
=4sin
B
2
cos
B
2
,
∴sin
B
2
=
1
2
cos
A-C
2
=
3
4
,而0<
B
2
π
2
,∴cos
B
2
=
13
4
,
∴sinB=2sin
B
2
cos
B
2
=2×
3
4
×
13
4
=
39
8
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)的基本關(guān)系的應(yīng)用.涉及了三角函數(shù)中倍角公式、和差化積公式等,熟練記憶公式是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)a,b,c是角A,B,C所對的邊,S是該三角形的面積,且4cosBsin2
B
2
+cos2B=0

(I)求角B的度數(shù);
(II)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)
a+b
c
=p,C=
π
3

(I)若sinA=
3
cosB
,求角B及實(shí)數(shù)p的值;
(II)求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)a,b,c分別是三個(gè)內(nèi)角A,B,C所對的邊,且b2+c2-a2=bc,A=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)a,b,c分別是三個(gè)內(nèi)角A,B,C所對的邊,b=2,c=1,面積S△ABC=
1
2
,則內(nèi)角A的大小為
π
6
6
π
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,設(shè)∠A,∠B,∠C的對邊分別為a,b,c,已知3cosA-2sin2A=0,
(1)求∠A的大。
(2)若a=
3
,b+c=3(b>c)
,求b,c的值.

查看答案和解析>>

同步練習(xí)冊答案