【題目】(本小題滿分12分)如圖,在四棱錐中,底面
是正方形,側面
底面
,且
,設
分別為
的中點.
(1)求證:平面∥平面
;
(2)求證:平面平面
.
科目:高中數學 來源: 題型:
【題目】某科研小組研究發(fā)現:一棵水果樹的產量(單位:百千克)與肥料費用(單位:百元)滿足如下關系:
.此外,還需要投入其它成本(如施肥的人工費等)
百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應求.記該棵水果樹獲得的利潤為
(單位:百元).
(1)求的函數關系式;
當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】濰坊文化藝術中心的觀光塔是濰坊市的標志性建筑,某班同學準備測量觀光塔的高度
(單位:米),如圖所示,垂直放置的標桿
的高度
米,已知
,
.
(1)該班同學測得一組數據:
,請據此算出
的值;
(2)該班同學分析若干測得的數據后,發(fā)現適當調整標桿到觀光塔的距離(單位:米),使
與
的差較大,可以提高測量精確度,若觀光塔高度為136米,問
為多大時,
的值最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動點 P 與定點的距離和它到定直線 x 4 的距離的比是1: 2 ,記動點 P 的軌跡為曲線 E.
(1)求曲線 E 的方程;
(2)設 A 是曲線 E 上的一個點,直線 AF 交曲線 E 于另一點 B,以 AB 為邊作一個平行四邊形,頂點 A、B、C、D 都在軌跡 E 上,判斷平行四邊形 ABCD 能否為菱形,并說明理由;
(3)當平行四邊形 ABCD 的面積取到最大值時,判斷它的形狀,并求出其最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2ax+2,x∈[﹣5,5].
(1)求實數a的范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調函數.
(2)求f(x)的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (m∈Z)為偶函數,且在(0,+∞)上為增函數.
(1)求m的值,并確定f(x)的解析式;
(2)若g(x)=loga[f(x)﹣ax](a>0且a≠1),是否存在實數a,使g(x)在區(qū)間[2,3]上的最大值為2,若存在,求出a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M≥0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的一個上界.已知函數f(x)=1+a( )x+(
)x , 若函數f(x)在[﹣2,1]上是以3為上界的有界函數,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com