分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),通過a與0的大小討論函數(shù)的單調(diào)性得到函數(shù)的極值.
(Ⅱ)方法1設(shè)g(x)=ex-ax2-x-1,則g'(x)=ex-2ax-1=f(x).通過$a≤\frac{1}{2}$,$a>\frac{1}{2}$時(shí),通過函數(shù)的單調(diào)性,函數(shù)的最值,求解a的取值范圍.
(Ⅱ)方法2,由(Ⅰ)當(dāng)$a=\frac{1}{2}$時(shí),推出ex≥1+x.(Ⅱ)設(shè)g(x)=ex-ax2-x-1,利用函數(shù)的單調(diào)性求解a的取值范圍.
解答 解:(Ⅰ)f'(x)=ex-2a,
若a≤0,則f'(x)>0,f(x)在g(x)上單調(diào)遞增,沒有極值. …(2分)
若a>0,令f'(x)=0,x=ln2a,列表
x | (-∞,ln2a) | ln2a | (ln2a,+∞) |
f'(x) | - | 0 | + |
f(x) | ↘ | f(2a) | ↗ |
點(diǎn)評 本題考查函數(shù)導(dǎo)數(shù)的綜合應(yīng)用,函數(shù)的極值以及函數(shù)的最值,考查轉(zhuǎn)化思想以及分類討論思想的應(yīng)用,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=2sin(2x+$\frac{2π}{3}$) | B. | y=2sin(2x+$\frac{π}{3}$) | C. | y=2sin($\frac{x}{2}$-$\frac{π}{3}$) | D. | y=2sin(2x-$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | B. | $f(x)={x^2},g(x)={(\sqrt{x})^4}$ | ||
C. | f(x)=x2,g(x)=$\root{3}{x^6}$ | D. | y=$\sqrt{x+1}\sqrt{x-1},y=\sqrt{(x+1)(x-1)}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a>\frac{1}{2}$ | B. | $a≤\frac{1}{2}$ | C. | $\frac{1}{2}<a≤2$ | D. | $a≤\frac{1}{2}$或a>2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com