精英家教網 > 高中數學 > 題目詳情
正方體中,異面直線所成角度為            .

試題分析:如圖,連結,由正方體的性質可知,所以或其補角為異面直線所成的角,而為正三角形,所以,故異面直線所成的角為.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,邊長為2的正方形ACDE所在的平面與平面ABC垂直,AD與CE的交點為M,,且AC=BC.
(1)求證:平面EBC;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在空間直角坐標系O-xyz中,正四棱錐P-ABCD的側棱長與底邊長都為,點M,N分別在PA,BD上,且

(1)求證:MN⊥AD;
(2)求MN與平面PAD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)在三棱柱中,側面為矩形,,的中點,交于點,側面.

(1)證明:;
(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

在三棱錐中,是邊長為2的正三角形,平面平面,,分別為的中點.

(1)證明:;
(2)求銳二面角的余弦值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若四棱柱的底面是邊長為1的正方形,且側棱垂直于底面,若與底面成60°角,則二面角的平面角的正切值為         

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在二面角中,且 , , 則二面角的余弦值為________________。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在三棱柱ABC-A1B1C1中,各棱長相等,側棱垂直于底面,點D是側面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是 (  ).
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

正三棱錐P—ABC中,CM=2PM,CN=2NB,對于以下結論:

①二面角B—PA—C大小的取值范圍是(,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為;
③過點M與異面直線PA和BC都成的直線有3條;
④若二面角B—PA—C大小為,則過點N與平面PAC和平面PAB都成的直線有3條.
正確的序號是         

查看答案和解析>>

同步練習冊答案