設(shè)f(x)=|x-a|+1,a∈R,則

[  ]

A.存在a,使f(x)是偶函數(shù),也存在a,使f(x)是奇函數(shù)

B.存在a,使f(x)是偶函數(shù),但不存在a,使f(x)是奇函數(shù)

C.不存在a,使f(x)是偶函數(shù),但存在a,使f(x)是奇函數(shù)

D.不存在a,使f(x)是偶函數(shù),也不存在a,使f(x)是奇函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:013

設(shè)f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1處均有極值,則下列點(diǎn)一定在x軸上的是

[  ]

A.(a,b)

B.(a,c)

C.(b,c)

D.(a+b,c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:天津一中2008-2009年高三年級(jí)三月考數(shù)學(xué)試卷(理) 題型:044

已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).

(1)求實(shí)數(shù)a的值組成的集合A;

(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州市2010屆高三科目教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理科試題 題型:044

設(shè)f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)

(1)當(dāng)λ1=1,λ2=0時(shí),設(shè)x1,x2f(x)的兩個(gè)極值點(diǎn),

①如果x1<1<x2<2,求證:(-1)>3;

②如果a≥2,且x2-x1=2且x∈(x1,x2)時(shí),函數(shù)g(x)=(x)+2(xx2)的最小值為h(a),求h(a)的最大值.

(2)當(dāng)λ1=0,λ2=1時(shí),

①求函數(shù)yf(x)-3(ln3+1)x的最小值.

②對(duì)于任意的實(shí)數(shù)a,bc,當(dāng)abc=3時(shí),求證3aa+3bb+3cc≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市奉賢區(qū)2011屆高三12月調(diào)研測(cè)試數(shù)學(xué)文科試題 題型:044

設(shè)h(x)=x+,x∈[,5],其中m是不等于零的常數(shù),

(1)m=1時(shí),直接寫出h(x)的值域

(2)求h(x)的單調(diào)遞增區(qū)間;

(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當(dāng)m=1時(shí),|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;

查看答案和解析>>

同步練習(xí)冊(cè)答案